
YosysHQ AppNote-109

YosysHQ GmbH

Oct 02, 2023

CONTENTS

1 Abstract 3

2 Organisation 5

3 Introduction 7
3.1 Brief history of SystemVerilog Assertions . 7
3.2 Introduction to SVA . 8

4 Assertion Types 11
4.1 Immediate Assertions . 11
4.2 Concurrent Assertions . 12

5 Elements of SVA 15
5.1 SVA Layers . 15
5.2 More Advanced SVA Constructs . 31

6 SystemVerilog System Functions in SVA 33
6.1 Bit Vector Functions Reference . 33
6.2 Sampled Value Functions . 34

7 References 37

i

ii

YosysHQ AppNote-109

What You will learn in this paper

• A brief history of SystemVerilog Assertions
• SVA layers definition and examples
• Assertion types, sequential property operators
• A short description of liveness and safety properties
• Practical examples using the sequence builder module written by our CTO Claire Xen.

CONTENTS 1

YosysHQ AppNote-109

2 CONTENTS

CHAPTER

ONE

ABSTRACT

This Application Note was written with the intention of showing a brief introduction to SVA, and is definitely not a
substitute for extensive training. To learn more about formal verification and SVA, it is recommended to book the
course given by the FPV specialists at YosysHQ.

3

YosysHQ AppNote-109

4 Chapter 1. Abstract

CHAPTER

TWO

ORGANISATION

• Section Property Checking with SystemVerilog Assertions contains a brief introduction of SVA and the descrip-
tion of some elementary terms.

• Section Assertion Types describes the different types of properties defined in the P1800, immediate and concur-
rent. It also presents both clock and disable conditions for concurrent assertions.

• Section Elements of SVA describes each layer of SVA: Boolean, Temporal, Property and Verification layers. This
section also describes some sequence property operators and property types.

5

YosysHQ AppNote-109

6 Chapter 2. Organisation

CHAPTER

THREE

INTRODUCTION

3.1 Brief history of SystemVerilog Assertions

Assertion Based Verification (ABV) is considered an efficient verification methodology of ASIC/SoC designs. This
methodology is based on instrumenting the design with assertions that were considered in the past as executable com-
ments that could be verified in simulation, emulation and formal property verification. These assertions served as a
documentation of the design as well, being sometimes preferred over comments inlined in the RTL constructs.

Many assertion language specifications were developed to address the different verification needs with ABV. For ex-
ample, ForSpec, OVA, ‘e’ and Sugar. These language specifications were not part of hardware design languages such
as VHDL or Verilog mainly because they were considered as languages of different purposes.

The SVA 3.1a assertion specification was born as an integral part of the SystemVerilog specification language with the
introduction of SystemVerilog 3.1a and its goals of including both hardware design and verification capabilities.

The difference between SVA 3.1a and other property specification languages is that SVA is a native part of the Sys-
temVerilog language, and the assertions were no longer seen as interpreted comments but as part of the language itself.
The standardisation of the semantics of SVA facilitated that different verification, emulation and formal property check-
ing EDA tools could standardize its implementation, ensuring that all designs had the same results across different tools.
This increased the adoption of SVA in the industry.

In SVA 3.1a, both immediate and concurrent assertions were defined as part of the standard. There were many conflicts
and weaknesses in some language features that were fixed in SVA2009. Different companies have worked to improve
the semantics and syntax of SVA to make it into what it is today.

The SVA (SystemVerilog Assertions) specification is part of the P1800. All the features of SystemVerilog regarding
assertions are specified by the Assertions Committee (SV-AC).

Note: The SVA and PSL (Property Specification Language) are the results of different efforts that started with the
standardisation of temporal logic for use in the hardware design and verification usage that Accelera Formal Verification
Technical Committee started around 1998.

7

YosysHQ AppNote-109

3.2 Introduction to SVA

What is an assertion1? - From the P1800, an assertion specifies a behavior of the system. This term is confusing because
is similar to the definition of property. In fact, both assert and property refer to the same thing. The inconsistency is
mainly because the term assertion is adopted in ABV, and property in FPV. ABV is more widely adopted, so the term
assertion is used in a more “traditionalist” way.

Note: The inconsistency in the definition of the building blocks of SVA that may lead to confusion can be read from
the P1800, where assertion is defined as:

• 16. Assertions, 16.2 Overview, P364, Rev 2017: “An assertion specifies a behavior of the system”.

• 16. Assertions, 16.2 Overview, P364, Rev 2017: “An assertion appears as an assertion statement that states the
verification function to be performed”.

• 16. Assertions, 16.2 Overview, P364, Rev 2017: “[assertion kinds . . .] assert, to specify the property as an
obligation for the design that is to be checked to verify that the property holds”.

Whereas property, is defined as:

• 16.12. Declaring properties, P420, Rev 2017: “A property defines a behavior of the design”.

So in short, an assertion is an affirmation or verification construct of a behavior described using properties or the
specification.

Another way to define an assertion is as an unambiguous design behavior expressed as a Boolean function or temporal
expressions, that the design must fulfill. Such property are usually described using a language that can express behaviors
of the design over time.

Then, what is SVA? - SVA is part of the P1800 and standardizes assertion language semantics for SystemVerilog. That
standard describes the usage of a linear temporal logic2 to define implementation correctness of a design described with
properties over Boolean-valued functions and/or sequences that can be used to characterize the set of states where such
formula holds, using assertions. SVA can be used for functional dynamic (simulation/emulation) and static (Formal
Property Verification) testing. The focus of YosysHQ are static methods, therefore the description of SVA will be related
to FPV.

Note: Although SVA talks a lot about verification tasks, it can (and should) also be used by design engineers. In
fact, in FPV all properties must be synthesizable, so they are more natural for a design engineer. Using SVA instead of
comments to check some functionalities of the RTL, or some behaviors when a testbench is not available, can be very
useful in the RTL bring-up, for example.

The building block of SVA is the property construct, that not only distinguishes an immediate from a concurrent
assertion, but is the actual element of the language where the behavior of the design is specified, for example, using
Boolean functions, sequences, and other expressions. SVA introduces different kind of assertions discussed in the
following sections.

Note: SVA supports both white-box and black-box verification.

Some benefits of SVA are:
1 Unfortunately, the definition of “assertion” is not consistent in the industry, and is often used interchangeably with the term “property”.
2 SystemVerilog Assertions are temporal logic and model checking methods applied to real world hardware design and verification. In fact,

most of the notations from the literature that describe these methods are employed to express the formal semantics of SVA in the P1800 Language
Reference Manual (LRM).

8 Chapter 3. Introduction

YosysHQ AppNote-109

• Enables protocols to be specified and verified using unambiguous constructs.

• Highly improves IP reuse. Interface assertions in the IP can be used as monitors for simulation/FPV to ensure
correct integration.

• Reduces Time to Market (TTM).

• Assertions can be used instead of comments to document in a concise way design behaviors in a common and
expressive language.

Among others.

There are two kinds of assertions: immediate and concurrent. Immediate assertions are further divided into simple
and deferred immediate. Deferred immediate are subdivided into observed immediate and final immediate assertions.
Except from Simple immediate that are used in SymbiYosys for the open source FPV framework, and concurrent as-
sertions, the rest are focused on simulation tasks. Immediate assertions are covered in detail in Appnote 105 Formal
Property Checking Basics.

Figure 3.1. A graphical description of the kinds of assertions.

An example of a concurrent assertion is shown in Figure 3.2. This is the kind of assertion commonly using in Formal
Property Verification (FPV).

3.2. Introduction to SVA 9

YosysHQ AppNote-109

Figure 3.2. One possible definition of a concurrent SVA.

As shown in Figure 3.2, the property has a verification layer with different functions namely assert, assume, cover
and restrict that are described in Verification Layer.

10 Chapter 3. Introduction

CHAPTER

FOUR

ASSERTION TYPES

4.1 Immediate Assertions

Immediate assertions are pure combinatorial elements that do not allow for temporal domain events or sequences.
Immediate assertions have the following properties:

• Non-temporal.

– They are evaluated and reported at the same time (they cannot wait for any temporal time).

• Evaluation is performed immediately.

– With the values sampled at the moment of activation of the assertion condition variables.

• Simpler evaluation semantics.

– A clocked immediate assertion does not have the semantics of a concurrent assertion3.

• Can be specified only in procedural blocks.

Figure 4.1. Immediate assertion example, with clocked and unclocked semantics.

Immediate assertions are better described in Appnote 105 Formal Property Checking Basics.
3 Although the result of using one or the other in FPV may be the same, under certain circumstances, the way in which they are evaluated, for

example, in simulation, is totally different. So this can create consistency problems in environments where the same assertions are used for both
flows.

11

YosysHQ AppNote-109

4.2 Concurrent Assertions

The concurrent assertions capture sequences of events that span over time, that is, they have a temporal domain that
is evaluated at each clock tick or time step of the system. A concurrent assertion raises the level of abstraction of
SystemVerilog due the transactional nature of this construct.

Only in terms of FPV, an immediate assertion could mimic a concurrent assertion if certain helper logic is created such
that it generates the notion of progress. This logic of course may not be correct and can be quite complex depending
on the property expression to be described, so it needs to be verified along with the property that this logic is supposed
to describe. This method is not suggested as it could add an extra verification task to the design that can be avoided
using SVA.

Note: One of the advantages of the Tabby CAD Suite over the Open Source Version of SymbiYosys is that a leading-
industry parser provides P1800 standard-compliant SV and SV-AC semantics for elaboration. So all the SystemVerilog
constructs are enabled for the designer/validation engineers to use either for Formal Property Verification and/or FPGA
synthesis.

The Figure 4.2 shows an example of a concurrent assertion definition. This kind of assertions can be defined in:

• initial or always blocks.

• Inside a systemverilog:module or systemverilog:checker object.

• In a SystemVerilog interface.

• For simulation, in program blocks.

Figure 4.2. Concurrent assertion example, defined in the procedural code and as standalone.

4.2.1 Clock or time step

Concurrent assertions are associated with a clock which defines the sampling clock or the point in time where the
assertion is evaluated. This construct helps to explicitly define the event for sampled valued functions as well, that
will be discussed in next sections. The default clock event for a concurrent property can be defined using the keyword
default clocking and serves as the leading clock for all the concurrent properties. The Figure 4.3 shows an example of
default clocking definition.

12 Chapter 4. Assertion Types

YosysHQ AppNote-109

4.2.2 Disable condition

Likewise, some properties may need to be disabled during some events, because their results are not valid anyway,
for example, during the reset state. The default disable iff (event) keywords can be used to define when a
concurrent assertion result is not intended to be checked. The Figure 4.3 shows an example of default reset definition.

// Concurrent properties are checked each *posedge* PCLK
default clocking
formal_clock @(posedge PCLK);

endclocking

// And disabled if the *PRSTn* reset is deasserted
default disable iff (!PRSTn);

/* The property does not need to explicitly
* define PCLK as main clock and !PRSTn as disable event, as it is
* defined in the default clocking and disable blocks. */
property_a: assert property (RxStatus == 3'b011 |-> ##1

Receiver_detected);

Figure 4.3. Usage of default clocking and default disable events used to state that all concurrent properties are
checked each posedge PCLK and disabled if the PRSTn reset is deasserted.

4.2. Concurrent Assertions 13

YosysHQ AppNote-109

14 Chapter 4. Assertion Types

CHAPTER

FIVE

ELEMENTS OF SVA

5.1 SVA Layers

A concurrent property is composed primarily of four layers:

• Boolean layer.

• Temporal or Sequence layer.

• Property layer.

• Verification layer.

These layers makes SVA very expressive. More details are discussed in the following sections.

5.1.1 Boolean Layer

Concurrent properties can contain Boolean expressions that are composed of SystemVerilog constructs with some
restrictions5. These expressions are used to express conditions or behaviors of the design. Consider Figure 5.1 that
represents the Boolean layer of a concurrent property extracted from AXI4-Stream.

// An invalid scenario that is reserved (op: not)
// occurs when there's any bit in the vector (op: wide-or)
// whose TKEEP value is LOW and TSTRB is HIGH (op: not TKEEP and TSTRB)
!(|(~TKEEP & TSTRB));

Figure 5.1. The Boolean layer of the following property: “A combination of TKEEP LOW and TSTRB HIGH must
not be used (2.4.3 TKEEP and TSTRB combinations, p2-9, Table 2-2).” from AMBA IHI0051A.

The evaluation of the Boolean expression shown in Figure 5.1 will be logic one when any combination of a TKEEP
bit low and the same bit in TSTRB high, otherwise the result will be logic zero. The SystemVerilog Boolean operators
are used in the SVA Boolean layer to represent true/false conditions.

Another type of constructs that can be expressed in the Boolean layer are the Boolean invariance properties. A Boolean
invariance (or invariant) property evaluates to true on any state, in other words, a property that always holds. For
example, consider the following sentence: “The packet_error port must be never asserted” that can be expressed as an
assertion in the following way:

5 These restrictions are described in P1800 Section 16.6 Boolean expressions.

15

YosysHQ AppNote-109

ap_never: assert property (@(posedge clk) disable iff(!rstn)
!packet_error);

Invariant Example

The file ../src/invariant/invariant.sv applies defines the following sequence for the property ap_never:

In the following way:

default clocking @(posedge clk); endclocking
default disable iff(!rstn);
seq #("__------------------") reset (clk, rstn);
seq #("xx____x_____________") pkt_err (clk, packet_error);

By running the command sby -f ../src/invariant/invariant.sby err it can be seen that packet_error is set as 1 at step
6 causing a failure of the property. To fix this, the sequence pkt_err must be always low:

seq #("xx__________________") pkt_err (clk, packet_error);

Running sby -f ../src/invariant/invariant.sby pass will make the error will go away.

The unary logical negation operator is used to express that packet_error should not evaluate to logic one or the asser-
tion will fail. The @(posedge clk) implicitly implies that this Boolean condition is always evaluated, therefore this
assertion is an invariant because it should always hold.

Note: When FPV proves that an assertion holds in the design, is because the solver guarantees that the property is
true in any reachable state from certain initial state. This is the definition of an invariance property, and in fact, is how
the solver decides to finish the proof if he has found that the property is an invariant. This is specially helpful in certain
FPV techniques to cope with complexity, such as assume-guarantee technique. Future application notes will delve into
these topics.

16 Chapter 5. Elements of SVA

YosysHQ AppNote-109

5.1.2 Temporal or Sequence Layer

The temporal layer express behaviors that can span over time, usually expressed using SERE-regular6 expressions
known as sequences that describes sequential behaviors composed of Boolean conditions that are employed to build
properties.

SVA provides a set of powerful temporal operators that can be used to describe complex behaviors or conditions in
different points of time.

Sequences can be promoted to sequential properties if they are used in a property context (in other words, when used
in property blocks). Starting from SV09, weak and strong operators have been defined. Strong sequential properties
hold if there is a non-empty match of the sequence (it must be witnessed), whereas a weak sequence holds if there is
no finite prefix witnessing a no match (if the sequence never happens, the property holds).

Strong sequential properties are identified by the prefix s_ as in:

• s_eventually

• s_until

• s_until_with

• s_nexttime

Or enclosed within parenthesis after the keyword strong as in:

strong(s ##[1:$] n);

Note: The default evaluation of sequential properties (if they are weak or strong) when the weak or strong operands
are omitted depends on the verification directive where they are used:

• Weak when the sequence is used in assert or assume directive.

• Strong in all other cases.

Some sequential property operators are discussed below.

5.1.3 Basic Sequence Operators Introduction

5.1.4 Bounded Delay Operator

Sequences can be more complex than just Boolean values. Basic sequences can contain single delays (for example
##1 that means one cycle delay) and bounded/unbounded range delays (the bounded sequence ##[1:10] means one
to ten cycles later, the unbounded sequence ##[+]means one or more cycles later). Sequences can be enclosed within
sequence {} endsequence SVA constructs, or described directly in a property block.

A sequence can be seen as a description that defines values over time, and unlike properties or Boolean functions, a
sequence does not have true or false values but matches or tight satisfaction points. For example, the sequence foo is
followed by bar in one or two cycles expressed in SVA as:

foo ##[1:2] bar

Is shown in Figure 5.2. As can be seen, there may be different match or tight satisfaction points:

• When foo is true at cycle t2 and bar at cycle t3.

• When foo is true at cycle t2 and bar at cycle t4.
6 Sequential Extended Regular Expressions.

5.1. SVA Layers 17

YosysHQ AppNote-109

• When foo is true at cycle t2 and bar is true at cycle t3 and t4.

There is also a case where sequence does not match, which is when foo is true at cycle t2 but bar is not seen during the
next one or two cycles.

Figure 5.2. Example of sequence foo ##[1:2] bar.

Bounded Delay Example

The src/relaxed_delay/relaxed_delay.sv uses the waveform in Figure 5.2, and a slightly modification of the property
used to describe that image, to exemplify the bounded delay operator in an assertion.

In the waveform, the match of the sequences are shown in cycles 3, 7, 10 and 11, and no match in any of 18 or 19
when bar is expected to be asserted. The property does not specify expected behavior in the cycles 11 to 16, so any
value that foo has in these cycles does not affect the property validity.

18 Chapter 5. Elements of SVA

YosysHQ AppNote-109

The sequence is described in relaxed_delay as follows:

seq #("__------------------") reset (clk, rstn);
seq #("__-__-__-_______-___") seq_foo(clk, foo);
seq #("___-___-_--_----____") seq_bar(clk, bar);

And the assertion where this sequence is used:

ap_relaxed_delay: assert property (foo |-> ##[1:2] bar);

By running sby -f src/relaxed_delay/relaxed_delay.sby err an error is shown pointing that the last foo is not fol-
lowed by bar in the defined time window, as described in Figure 5.1 wave name No match (also shown at smt_step
16 in GTKWave).

To fix this, the last foo must be followed again by bar in one to two cycles, so the sequence needs to be changed:

seq #("__-__-__-_______-__-") seq_foo(clk, foo);
seq #("___-___-_--_----_-__") seq_bar(clk, bar);

The bounded operators ##m and ##[m:n] where m and n are non-negative integers, can be used to specify clock delays
between two events. The Figure 5.2 is an example of usage of these operators. For the following sequence:

foo ##m bar

If m == 1 the sequence is split in two adjacent fragments, concatenating both foo and bar expressions. If m == 0 both
foo and bar overlaps, creating a fusion of both expressions. The sequence concatenation starts matching bar in the next
clock cycle after foo matches. Whereas for sequence fusion, both foo and bar start matching at the same clock tick
where foo matches. See Figure 5.3 for a better understanding.

Figure 5.3. Illustration of sequence fusion and sequence concatenation.

For a more concise example, consider the Figure 14-5 Combined Tx and Rx state machines from ARM IHI 0050E. To
describe the transitions of the Tx Link FSM the following sequence can be defined:

5.1. SVA Layers 19

YosysHQ AppNote-109

Example of the sequence tx_link_full that happens in 5 clock cycles.

/* TX FSM should transition from TxStop
* to TxAct in one to four cycles. And
* in the same way with the other states
* of the FSM, fulfilling the transitions
* shown in Figure 14-5. */
sequence tx_link_full;
fsm_lnk_ns.chi_tx_t == TxStop ##[1:4]
fsm_lnk_ns.chi_tx_t == TxAct ##[1:4]
fsm_lnk_ns.chi_tx_t == TxRun ##[1:4]
fsm_lnk_ns.chi_tx_t == TxDeact ##[1:4]
fsm_lnk_ns.chi_tx_t == TxStop ##[1:4]

endsequence

Note: The tx_link_full is a relaxed sequence because it allows the check of the transitions to happen in a small time
window and not in a fixed amount of cycles. This usually helps in property convergence of complex sequences or
architecture exploration for RTL development.

This sequence tx_link_full describes the transition of the Tx Link FSM from TxStop up to TxStop that precedes TxDe-
act. This sequence can be used in a cover or assert construct to verify that the design implements correctly the Tx Link,
or to show a witness of this transition. For example, to find a trace in a design where these transitions are fulfilled, a
cover construct such as the one shown below can be employed:

wp_full_tx: cover property (@(posedge ACLK) disable iff (!ARESETn) tx_link_full);

Warning: For FPV, it is always recommended to keep the cycle window small as possible since this impacts the
performance of the proof.

20 Chapter 5. Elements of SVA

YosysHQ AppNote-109

5.1.5 Unbounded Delay Operator

There are two operators for relaxed delay requirements:

• Zero or more clock ticks: ##[0:$] (or the shorcut ##[*]).

• One or more clock ticks: ##[1:$] (or the shorcut ##[+]).

The formal semantics are the same as in the bounded delay operator. These operators are useful, for example, to check
forward progress of safety properties that could be satisfied by doing nothing. What does this means?, consider the
VALID/READY handshake defined in ARM IHI 0022E Page A3-9 (better known as AXI-4 specification). A potential
deadlock can happen when VALID signal is asserted but READY is never asserted. If the property shown in Figure 5.4
is part of a design where READY is deasserted forever after VALID has been asserted, the property will pass vacuously.

/* , , *
* |\\\\ ////| "EXOKAY: Exclusive access okay. Indicates that *
* | \\\V/// | either the read or write portion of an exclusive *
* | |~~~| | access has been succesful". *
* | |===| | Ref: A3.4.4 Read and write response structure, *
* | |A | | pA3-57, Table A3-4. *
* | | X | | *
* \ | I| / *
* \|===|/ *
* '---' */
property rdwr_response_exokay (valid, ready, resp);
(valid && ready &&
(resp == amba_axi4_protocol_checker_pkg::EXOKAY));

endproperty // rdwr_response_exokay

Figure 5.4. A property that monitors the EXOKAY response value when VALID and READY are asserted.

To check that the system is actually making progress, the property using one or more clock ticks operator shown in
Figure 5.5 can be used. If this property fails, then the FPV user can deduce that property of Figure 5.4 is not healthy.

// Deadlock (ARM Recommended)
/* , , *
* |\\\\ ////| It is recommended that READY is asserted within *
* | \\\V/// | MAXWAITS cycles of VALID being asserted. *
* | |~~~| | This is a *potential deadlock check* that can be *
* | |===| | implemented as well using the strong eventually *
* | |A | | operator (if the required bound is too large to be *
* | | X | | formally efficient). Otherwise this bounded *
* \ | I| / property works fine. *
* \|===|/ *
* '---' */
property handshake_max_wait(valid, ready, timeout);
valid & !ready |-> ##[1:timeout] ready;

endproperty // handshake_max_wait

Figure 5.5. A property that checks for a deadlock condition. If VALID is asserted and READY is not asserted in
timeout non-negative cycles, the property will be unsuccessful.

5.1. SVA Layers 21

YosysHQ AppNote-109

Note: The property of Figure 5.5 can still fail in certain scenarios. This is because the unbounded operator employed
in the property definition has weak semantics. A better solution could be to make this property strong but this implies
that this safety property will be converted into a liveness one. Liveness and safety concepts are described in Property
Layer section.

5.1.6 Consecutive Repetition

Imagine the following property from an SDRAM controller (JESDEC 21-C): The WR (write) command can be followed
by a PRE (precharge) command in a minimum of tWR cycles. If tWR == 15 then the property can be described as
follows:

let CMDWR = (cmd == WR && bank == nd_bank);
let notCMDPRE = !(cmd == PRE && bank == nd_bank);
// notCMDPRE must hold 15 times after WR command is seen
property cmdWR_to_cmdPRE;
CMDWR |-> ##1 notCMDPRE ##1 notCMDPRE ##1 notCMDPRE

##1 notCMDPRE ##1 notCMDPRE ##1 notCMDPRE
... ##1 notCMDPRE ##1 notCMDPRE;

endproperty

Note: The let declaration serves as customization and can be used as a replacement for text macros, but with a local
scope. Also, unlike the compiler directives ifdef, ifndef, etc, the let construct is part of the SystemVerilog language, so
it is safer to use than macros.

This is too verbose and not an elegant solution. SVA has a construct to define that an expression must hold for m
consecutive cycles: the consecutive repetition operator [*m]. The same property can be described using the consecutive
repetition operator as follows7:

let CMDWR = (cmd == WR && bank == nd_bank);
let notCMDPRE = !(cmd == PRE && bank == nd_bank);
// notCMDPRE must hold 15 times after WR command is seen
property cmdWR_to_cmdPRE;
CMDWR |-> ##1 notCMDPRE [*15];

endproperty

And if the tWR value is set as a parameter, then this can be further reduced to:

CMDWR |-> ##1 notCMDPRE [*tWR];

Consecutive Repetition

The file src/consecutive_repetition/consecutive_repetition.sv demonstrates both the consecutive repe-
tition operator in practice and the usage of non-deterministic elements for exhaustive verification of
structures such as the number of banks in an SDRAM controller. First, the following waveform:

7 The nd_bank expression is a non-deterministic value chosen by the formal solver as a symbolic variable. A symbolic variable is a variable that
takes any valid value in the initial state and then is kept stable. This variable is useful to track a single arbitrary instances of a design where properties
are defined for multiple symmetric units.

22 Chapter 5. Elements of SVA

YosysHQ AppNote-109

Represents a possible valid sequence of commands, encoded in the file consecutive_repetition.sv as
follows:
seq #("03200000200001200100", 2) seq_cmd(clk, cmd);

It can be seen that, at clock cycle 14, the cmd == WR but a cmd == PRE is seen at cycle 17 (3 cycles
after a write) violating the property, as shown in the waveform called Fail, this scenario can be seen by
executing sby -f src/consecutive_repetition/consecutive_repetition.sby err.

The problem can be solved, for example, by modifying the controller FSM re-schedule a cmd == PRE
for a longer time if possible. In this case, by fixing the sequence seq_cmd as follows:

seq #("03200000200001200000", 2) seq_cmd(clk, cmd);

As a final note, observe how the solver is selecting different SDRAM banks by choosing values for
bank[7:0] and it finally found the problem in the bank bank[7:0] == 8'hFF that has the same value
as nd_bank[7:0]. That value was never selected by any logic but instead was defined as a symbolic,
non-deterministic variable that can be, conceptually, any possible valid value. In this scenario, this
means that the property holds for all SDRAM banks in the design, for all combination of commands.
This is a simple but powerful FPV concept, that will be explained in detail in a future application note.
/* Conceptually nd_bank is any possible value in the range
* of BA_WIDTH-1. So this variable test all possible banks
* of the SDRAM, in all possible conbinations, instead of
* using a fixed value. The nd_bank is a (free) primary input */
nd_bank_select: assume property($stable(nd_bank));

As with delay operators, sequence repetition constructs have some variants such as:

• Consecutive repetition range s[*m:n]: The sequence s occurs from m to n times.

• Infinite repetition range s[*]: The sequence s is repeated zero or more times.

• Infinite repetition range s[+]: The sequence s is repeated one or more times.

• Nonconsecutive repetition operator s[=m:n]: The sequence s occurs exactly from n to m times and s is not
required to be the last element.

• GoTo repetition operator s[->m:n]: The sequence s occurs exactly from n to m times and s is required to be
the last element.

5.1. SVA Layers 23

YosysHQ AppNote-109

Warning: Not all sequential property operators are FPV friendly:

• GoTo and nonconsecutive operators.

• Throughout.

• Intersect.

• first_match().

• Within.

• Etc.

These operators increases the complexity of the model and may cause some assertions not converge. Use them with
caution.

All these operators was demonstrated in practice using the same seq.sv in the past, by Matt Venn, so they will not
be shown again in this document. The reader is invited to generate some random sequences and try the operators
in some properties. It is a great exercise to understand the fundamentals of sequential properties.

5.1.7 Property Layer

The property layer is where all the expressiveness of SVA starts to take shape. In this layer, Boolean con-
structs, sequences and property operators are used to encapsulate the behavior of the design within property ...
endproperty blocks that will be further utilised by the verification layer to perform a certain task.

A property construct can have formal arguments as shown in Figure 5.4 and Figure 5.5, that are expanded when the
property is instantiated with the proper arguments. Properties can also have no arguments.

The P1800 defines several kinds of properties of which some are shown below:

• Sequence: As described in Section Temporal or Sequence Layer, a sequence property have three forms namely
sequence_expression, weak(sequence_expression) and strong(sequence_expression). Remember that a sequence
is promoted to a sequence property if the sequence expression is used in property context.

• Negation: This property uses the not property_expression operator to basically evaluate to true if prop-
erty_expression is false.

• Disjunction: A property of the form property_expression1 or property_expression2 evaluates to true if at least
one of the property expressions evaluates to true.

• Conjunction: A property of the form property_expression1 and property_expression2 evaluates to true if the
two property expressions evaluates to true.

• If-else: This property has the form if (condition) property_expression1 else property_expression2 and can be
seen as a mechanism to select a valid property based on a certain condition.

• Implication: One of the most used kinds of properties in ABV. This property has the form sequence_expression
|=> or |-> property_expression that connects the cause (expression in LHS or antecedent) to an effect (expres-
sion in RHS or consequent). More about this type of property is described in YosysHQ AppNote 120 – Weak
precondition cover and witness for SVA properties.

The rest of the kinds of properties are better explained with a graph as shown below.

Note: There are different versions of the following properties. Refer to P1800 (2017) Section 16.12 Declaring
properties for more information.

Nexttime property This property evaluates to true if the property expression p is true in the next clock cycle.

24 Chapter 5. Elements of SVA

YosysHQ AppNote-109

Figure 5.6. The property nexttime p holds if p is true in the next clock cycle.

Always property This property evaluates to true if the expression p holds at all states.

Figure 5.7. The property always p is also known as invariance property or simply invariant.

Eventually property This property evaluates to true if the expression p holds at some time in the future.

5.1. SVA Layers 25

YosysHQ AppNote-109

Figure 5.8. The property eventually p can be used to check for progress during proof evaluation.

Until property The property p until q is true starting from an initial point if q is true in some reachable state from the
initial state, and p is true in all states until q is asserted.

Figure 5.9. The property eventually p can be used to check for progress during proof evaluation.

Property Operators Examples

The file ./src/property_operators/property_operators.sv has some sequences and properties that needs
to be fixed:

Sequences:

seq #("____--____----------") seq_en(clk, en);
seq #("_____-_-_-----------") seq_a(clk, a);
seq #("_____-------__------") seq_b(clk, b);
seq #("_______-------______") seq_c(clk, c);
seq #("______________--____") seq_d(clk, d);

26 Chapter 5. Elements of SVA

YosysHQ AppNote-109

Properties:

ap_nexttime: assert property (en |-> nexttime a);
ap_always: assert property(en |=> always b);
ap_until: assert property(en |=> c until d);

This is a quite simple exercise. We will publish the solution in the next application note.

5.1.8 Safety Properties

A safety property, in short, checks that something bad never happens. It is the most used type of property in FPV
because it is less complicated for a solver to find a proof, compared to the liveness case (for example, by proving
inductively that the property is an invariant).

These might be the results of a safety property:

• A full proof is reached, meaning that the solver can guarantee that a “bad thing” can never happen.

• A bounded proof showing that the “bad thing” cannot happen in a certain number of cycles.

• A counterexample of finite prefix showing the path where the “bad thing” happens.

An example of a safety property extracted from IHI0051A amba4 axi4 stream is shown below:

/* , , *
* |\\\\ ////| "Once TVALID is asserted it must remain asserted *
* | \\\V/// | until the handshake (TVALID) occurs". *
* | |~~~| | Ref: 2.2.1. Handshake Protocol, p2-3. *
* | |===| | *
* | |A | | *
* | | X | | *
* \ | I| / *
* \|===|/ *
* '---' */
property tvalid_tready_handshake;
@(posedge ACLK) disable iff (!ARESETn)
TVALID && !TREADY |-> ##1 TVALID;

endproperty // tvalid_tready_handshake

Figure 5.10. A safety property to state that a packet should not be dropped if the receiver cannot process it.

5.1.9 Liveness Properties

A liveness property checks that something good eventually happens. These kinds of properties are more complex to
check in FPV because in contrast to safety properties a CEX cannot be found in a single state. To find a CEX, sufficient
evidence is needed that the “good thing” could be postponed forever, and sometimes an auxiliary property is needed to
help the solver understand that there is some progress ongoing (fairness assumption).

A safety property can be trivially proven by doing nothing, because this will never lead to a scenario where a “bad
thing” occurs. A liveness property complements safety properties, but they are more difficult to prove because the
solver needs to guarantee that something will happen infinitely many times.

5.1. SVA Layers 27

YosysHQ AppNote-109

An example of a liveness property is from the classic arbiter problem that states that every request must be eventually
granted, that can be described in SVA as follows:

property liveness_obligation_arbiter;
req |=> s_eventually gnt

endproperty

Another example of a liveness property that defines that a handshake must eventually occur between a sender and a
receiver, from the IHI0022E AMBA and AXI protocol spec, is shown below.

// Deadlock (ARM Recommended)
/* , , *
* |\\\\ ////| It is recommended that READY is asserted within *
* | \\\V/// | MAXWAITS cycles of VALID being asserted. *
* | |~~~| | This is a *potential deadlock check* that can be *
* | |===| | implemented as well using the strong eventually *
* | |A | | operator (if the required bound is too large to be *
* | | X | | formally efficient). Otherwise this bounded *
* \ | I| / property works fine. *
* \|===|/ *
* '---' */
property handshake_max_wait(valid, ready);
valid & !ready |-> strong(##[1:$]) ready;

endproperty // handshake_max_wait

Figure 5.11. Using a liveness property to check for deadlock conditions. This is a very common practice.

A deep explanation of how a solver of a FPV tool finds a liveness CEX is outside of the scope of this application note,
but for the sake of clarity, consider Figure 5.12 that explains in broad terms the rationale behind liveness property
analysis.

Figure 5.12. A very simplistic example of liveness resolution.

Liveness Property Example

The liveness properties are very important for FPV, specially for proving designs free of deadlocks, livelocks, star-
vation and lost of information. One of the problems with liveness, apart from the difficulties to achieve proof con-
vergence, is debugging them: understanding safety CEX can be difficult sometimes, but interpreting liveness CEX
can be quite an art.

28 Chapter 5. Elements of SVA

YosysHQ AppNote-109

In future application notes, a deep explanation of liveness properties will be provided. To introduce some of the
issues and solutions when working with them, consider the following trivial Finite State Machine:

This FSM is written as follows:
`default_nettype none
module liveness
(input bit clk, rstn,
input bit start,
output bit done);

typedef enum logic [1:0] {idle, decrypt, validate_key, inform_result} states_t;
states_t ps;

default clocking fpv_clk @(posedge clk); endclocking

// Drive the reset sequence
init0: assume property($fell(rstn) |=> ps == idle);
init1: assume property($rose(rstn) |=> rstn);

// Drive outputs
ap_done: assume property(ps == inform_result |=> done);

// Write the state machine transitions as assumptions
state0: assume property(disable iff(!rstn)

start && ps == idle |=> ps == decrypt);

state1: assume property(disable iff(!rstn)
ps == decrypt |=> ps == validate_key);

state2: assume property(disable iff(!rstn)
ps == validate_key |=> ps == inform_result);

state3: assume property(disable iff(!rstn)
ps == inform_result |=> ps == idle);

5.1. SVA Layers 29

YosysHQ AppNote-109

// A weak unbounded property that cant catch the deadlock
ap_deadlock: assert property(disable iff(!rstn)

ps == idle |-> ##[1:$] ps == inform_result);

// A liveness property to check for FSM deadlocks better than ap_deadlock
ap_deadlock_2: assert property(disable iff(!rstn)

ps == idle |=> s_eventually ps == inform_result);
endmodule // liveness

The property ap_deadlockwas written to capture any deadlock, but due to the weak nature of the unbounded delay
operator, this will not be possible (but why?). The property ap_deadlock_2 is a better solution for this problem. By
running sby -f ./src/liveness/liveness.sby err it can be seen that, although the FSM sequence is correct, SBY shows
that the property FAILS, furthermore, there is no VCD file to debug. What to do now?

One of the techniques to debug liveness properties is to find if the liveness obligation is fulfilled by using a bounded
safety assertion. If such property fails, it means that a fairness assumption is missing. In this case, the liveness
obligation is ps == inform_result. The reader is invited to analyse Figure 5.12 to understand what is happening
(hint: there are two return paths to idle, one when start is 0 and other when start can become 1, in only one of these
two paths the liveness obligation is fulfilled).

As mentioned before, a future appnote will delve into this, but to continue with the example, the solution or the
missing fairness assumption is shown below:

ap_fairness: assume property(disable iff(!rstn)
!start |=> s_eventually start);

Uncomment lines 45 to 48 to enable the ap_fairness assumption.

By filling line 32 with an erroneous state and running sby -f ./src/liveness/liveness.sby pass, the deadlock will be
captured by the property and now we know that the CEX is true and not an spurios false negative.

ps == validate_key |=> ps == <state>); // correct state

5.1.10 Verification Layer

A property by himself does not execute any check unless is instantiated with a verification statement. In section Property
Layer results of property evaluation are constantly mentioned. Those values and conditions applies when the property
is used with the verification directives listed below:

Note: For simulation, properties works as monitors that checks the traffic/behavior of the test vectors applied to the
design under test. For FPV, properties are non-deterministic since all possible values are used to check a proof.

• assert: Specifies validity, correctness, or a behavior that a system or design is obligated to implement. When
using the assert function, the solver’s task is to either conclude that the assertion and the design are a tautology or
to show a counterexample (CEX) indicating how the design violates or contradicts the assertion. Behaviors are
observed on the outputs of a Boolean functions, either design primary outputs or internal signals where
some calculations of interest happens. In short, The assertion w.r.t of a property must be true for all legal
values applied at design inputs.

• assume: The property models how inputs of the design are driven in an unexamined way, that is, as a fact that
the solver does not check but uses to constrain the valid values that will be used in the primary inputs. when an
assertion with related input assumptions is proven, it is said that it holds assuming only the values constrained
at the input are driven in the block under test. Modeling assumptions is one of the most error-prone tasks in

30 Chapter 5. Elements of SVA

YosysHQ AppNote-109

formal verification that can cause some problems such as vacuity as described in YosysHQ AppNote 120 – Weak
precondition cover and witness for SVA properties. Assumption correctness is not checked by the formal tool.

• cover: Checks for satisfiability, that is, an evidence of whether any given behavior is implemented in the design.
The main difference with the assertion statement is that when using the cover statement on a property, the proof
succeed if there is any behavior in the design that the property dictates. For the proof under assertion directive,
the behavior should be observed for all conditions in the inputs of the design.

• restrict: This directive is primarily used in FPV and is ignored in simulation. The restrict directive has similar
semantics as assume, but is intended to use as delimiter in the state space, or in other words, to help in assertion
convergence4. For example, the restrict verification directive can be used to prove in a separated way, each
arithmetic opcode (such as add, sub, etc). If the same environment is reused in simulation, the simulator will
ignore the restriction. Otherwise, if an assumption had been used, the simulator would have failed because it
cannot be guaranteed that certain opcode is the only one applied to the design.

For example, to assert the deadlock-free property shown in Figure 5.5, the following construct can now be defined using
all the SVA layers:

ap_AW_SRC_DST_READY_MAXWAIT:
assert property(disable iff (!ARESETn) handshake_max_wait(AWVALID, AWREADY))
else $error("Violation: AWREADY should be asserted within MAXWAIT cycles",

" of AWVALID being asserted (AMBA recommended).");

Figure 5.13. Using the AXI deadlock property as an assertion.

In this way and using the other verification directives as well, FPV users can create powerful SVA checks for simple
and complex designs.

Note: The action block (or the `else $error [...]) is not synthesizable, therefore an FPV tool will not execute
that part of the assertion. This helps to debug the case where a property is failing as the FPV user can see the source
code and get an idea of where to check for more information. It is also important to give a meaningful name to all the
properties/assertions, so debugging and readability are improved. If no name is given to a property, the FPV tool will
assign a name to it.

5.2 More Advanced SVA Constructs

5.2.1 Checkers

Usually, properties are defined inside a module but this has been proven to be a problem in certain scenarios. For
example, in a module, all port types must be explicitly defined but to reuse properties sometimes it is needed that the
unit that encapsulates the SVA constructs can admit any type as input (to make it generic). Also, modules cannot accept
sequences and/or properties as inputs and some other drawbacks that the construct checker . . . endchecker solves.

For example, a checker to create the deadlock-free checker for property shown in Figure 5.11 the following code can
be used:

checker deadlock_axi(sequence handshake_start, property handshake_end);
default clocking fpv_clk @(posedge ACLK); endclocking

(continues on next page)

4 Convergence in FPV is the process to have a full proof, which can be challenging for some designs.

5.2. More Advanced SVA Constructs 31

YosysHQ AppNote-109

(continued from previous page)

default disable iff(!ARESETn);

property handshake_max_wait(valid_seq, ready);
valid_seq |=> s_eventually ready;
endproperty // handshake_max_wait

deadlock_free: assert property(handshake_max_wait(handshake_start, handshake_end));
endchecker

32 Chapter 5. Elements of SVA

CHAPTER

SIX

SYSTEMVERILOG SYSTEM FUNCTIONS IN SVA

The P1800 provides some system functions and utilities that can be used to increase expressibility of SVA, these are
the Bit Vector Functions and Sampled Value Functions. System functions are well described in the P1800 LRM and are
quite straightforward to understand. Some examples are shown below for the sake of exemplification. These examples
contains some errors that needs to be fixed.

Note: To use SystemVerilog system functions, the argument of the function must be known at elaboration time.
Remember that all components of SVA for FPV must be synthesizable.

6.1 Bit Vector Functions Reference

6.1.1 The $countbits function

This function returns the number of bits of an specific set of values in a bit vector. See the following example.

seq #("__________________-_") seq_a(clk, a);
ap_countbits: assert property($countbits(a, '1) == 1'b0);

Execute sby -f ./src/src/system_functions/systemf_bv.sby err and see the result, it may need to be fixed.

6.1.2 The $countones function

Counts the number of 1’s in a bus, equivalent to $countbits(expr,'1). See the following example.

seq #("__________________-_") seq_a(clk, a);
ap_countones: assert property($countones(a) == 1'b0);

Execute sby -f ./src/src/system_functions/systemf_bv.sby err and see the result, it may need to be fixed.

33

YosysHQ AppNote-109

6.1.3 The $onehot0 function

Evaluates to true if at most one bit of the bus is set to logic one, otherwise it evaluates to zero. As its name mentions,
it is used to check that some bits are mutually exclusive. This expression is equivalent to $countbits(expression,
'1)<=1. See the following example:

seq #("00000000000000000000", 2) seq_b(clk, b);
ap_onehot0: assert property($onehot0(b));

Execute sby -f ./src/src/system_functions/systemf_bv.sby err and see the result, it may need to be fixed.

6.1.4 The $onehot function

It is similar to $onehot0 with the difference that $onehot is equivalent to $countbits(expression,'1)==1 (ex-
actly one bit set to logic one) and $onehot0 requires at most one (or none) bits set to 1. See the following example:

seq #("00000000000000000000", 2) seq_b(clk, b);
ap_onehot: assert property($onehot(b));

Execute sby -f ./src/src/system_functions/systemf_bv.sby err and see the result, it may need to be fixed.

6.1.5 The $isunknown function

This function evaluates to true if any bit from the vector has a don’t care (‘x) or high impedance (‘z). At the moment,
Tabby CAD has some limitations on these data types so the example will be skipped. This function can be used in FPV
to debug and detect X-propagation in digital designs.

6.2 Sampled Value Functions

6.2.1 The $sampled function

This function simply returns the sampled value of the argument. This function is redundant for concurrent assertions
and FPV8, and is more useful in simulation. However, there exist a case where is useful for FPV: when using disable
iff(reset) to define when the check is disabled, this reset results in an asynchronous event (i.e., the check will be
disabled at any time reset becomes 1). Using the $sampled function the disable condition can be “synchronized”:

assert property (@(posedge clk) disable iff($sampled(reset)) p |-> q);

6.2.2 The $past function

This system function has been studied frequently in other SymbiYosys tutorials. It simply returns the sampled value
of the expression in n steps ago. The value of the expression before the initial clock may be undefined, causing the
property to fail.

// If a is true in the current clock cycle it must be true
// in the previous cycle as well.
seq #("_-------------------") seq_a(clk, a);
ap_past: assert property($past(a));

8 Expressions in FPV are already using sampled semantics. This is the reason why $sampled is redundant.

34 Chapter 6. SystemVerilog System Functions in SVA

YosysHQ AppNote-109

Execute sby -f ./src/src/system_functions/systemf_sv.sby err and see the result, it may need to be fixed.

6.2.3 The $rose function

This function returns true if the LSB of the expression was 0 in the previous clock tick and 1 in the current.

// If b becomes 1, it must be 1 for the next 5 clock cycles
seq #("-------____________-") seq_b(clk, b);
ap_rose: assert property($rose(b) |=> b[*4]);
cp_rose: cover property($rose(b) ##1 b[*4]);

Execute sby -f ./src/src/system_functions/systemf_sv.sby err and see the result, then run sby -f
./src/src/system_functions/systemf_sv.sby cover and compare the result. It may need to be fixed.

6.2.4 The $fell function

This function returns true if the LSB of the expression was 1 in the previous clock tick and 0 in the current.

// If c becomes low, it must be low for the next 5 clock cycles
seq #("------------------__") seq_c(clk, c);
ap_fell: assert property($fell(c) |=> c[*4]);
cp_fell: cover property($fell(c) ##1 c[*4]);

Execute sby -f ./src/src/system_functions/systemf_sv.sby err and see the result, then run sby -f
./src/src/system_functions/systemf_sv.sby cover and compare the result. It may need to be fixed.

6.2.5 The $changed function

Returns true if the logic value of the expression changed.

// d toggles forever
seq #("_-_-_-_-_-_-_-_-_-_-") seq_d(clk, d);
ap_changed: assert property(<implement the assertion>);

Write the property ap_changed and run sby -f ./src/src/system_functions/systemf_sv.sby, then try to get a witness of this
property.

6.2.6 The $stable function

Returns true if the logic value of the expression remains stable, as seen in Consecutive Repetition.

6.2. Sampled Value Functions 35

YosysHQ AppNote-109

36 Chapter 6. SystemVerilog System Functions in SVA

CHAPTER

SEVEN

REFERENCES

• The YosysHQ AppNote 109 repository: https://github.com/YosysHQ-Docs/AppNote-109

• 1800-2017 - IEEE Standard for SystemVerilog Unified Hardware Design, Specification, and Verification Lan-
guage.

• Bustan, D., Korchemny, D., Seligman, E., & Yang, J. (2012). SystemVerilog Assertions: Past, present, and
future SVA standardization experience. IEEE Design & Test of Computers, 29(2), 23-31.

• The AMBA AXI4 Stream SVA Verification IP for FPV which was used to show some of the properties described
in this AppNote can be obtained in: https://github.com/dh73/A_Formal_Tale_Chapter_I_AMBA

37

https://github.com/YosysHQ-Docs/AppNote-109
https://github.com/dh73/A_Formal_Tale_Chapter_I_AMBA

	Abstract
	Organisation
	Introduction
	Brief history of SystemVerilog Assertions
	Introduction to SVA

	Assertion Types
	Immediate Assertions
	Concurrent Assertions
	Clock or time step
	Disable condition

	Elements of SVA
	SVA Layers
	Boolean Layer
	Temporal or Sequence Layer
	Basic Sequence Operators Introduction
	Bounded Delay Operator
	Unbounded Delay Operator
	Consecutive Repetition
	Property Layer
	Safety Properties
	Liveness Properties
	Verification Layer

	More Advanced SVA Constructs
	Checkers

	SystemVerilog System Functions in SVA
	Bit Vector Functions Reference
	The $countbits function
	The $countones function
	The $onehot0 function
	The $onehot function
	The $isunknown function

	Sampled Value Functions
	The $sampled function
	The $past function
	The $rose function
	The $fell function
	The $changed function
	The $stable function

	References

