
YosysHQ Yosys

YosysHQ GmbH

Jan 16, 2024

MANUAL

1 Introduction 3
1.1 History of Yosys . 3
1.2 Structure of this document . 4

2 Basic principles 5
2.1 Levels of abstraction . 5
2.2 Features of synthesizable Verilog . 8
2.3 Challenges in digital circuit synthesis . 12
2.4 Script-based synthesis flows . 13
2.5 Methods from compiler design . 14

3 Approach 19
3.1 Data- and control-flow . 19
3.2 Internal formats in Yosys . 20
3.3 Typical use case . 20

4 Implementation overview 23
4.1 Simplified data flow . 23
4.2 The RTL Intermediate Language (RTLIL) . 24
4.3 Command interface and synthesis scripts . 31
4.4 Source tree and build system . 31

5 Internal cell library 33
5.1 RTL cells . 33
5.2 Gates . 44

6 Programming Yosys extensions 51
6.1 Guidelines . 51
6.2 The “stubsnets” example module . 57

7 The Verilog and AST frontends 61
7.1 Transforming Verilog to AST . 62
7.2 Transforming AST to RTLIL . 64
7.3 Synthesizing Verilog always blocks . 65
7.4 Synthesizing Verilog arrays . 70
7.5 Synthesizing parametric designs . 71

8 Optimizations 73
8.1 Simple optimizations . 73
8.2 FSM extraction and encoding . 75
8.3 Logic optimization . 78

i

9 Technology mapping 79
9.1 Cell substitution . 79
9.2 Subcircuit substitution . 79
9.3 Gate-level technology mapping . 80

10 Memory mapping 81
10.1 Additional notes . 81
10.2 Simple dual port (SDP) memory patterns . 83
10.3 Single-port RAM memory patterns . 86
10.4 Read register reset patterns . 88
10.5 Asymmetric memory patterns . 89
10.6 True dual port (TDP) patterns . 91
10.7 Not yet supported patterns . 92
10.8 Undesired patterns . 93

A Auxiliary libraries 95
A.1 SHA1 . 95
A.2 BigInt . 95
A.3 SubCircuit . 95
A.4 ezSAT . 95

B Auxiliary programs 97
B.1 yosys-config . 97
B.2 yosys-filterlib . 97
B.3 yosys-abc . 97

C RTLIL text representation 99
C.1 Lexical elements . 99
C.2 File . 100

D 010: Converting Verilog to BLIF page 105
D.1 Installation . 105
D.2 Getting started . 105
D.3 Using a synthesis script . 106
D.4 Advanced example: The Amber23 ARMv2a CPU . 107
D.5 Verification of the Amber23 CPU . 109
D.6 Limitations . 109
D.7 Conclusion . 110

E 011: Interactive design investigation page 111
E.1 Installation and prerequisites . 111
E.2 Overview . 111
E.3 Introduction to the show command . 111
E.4 Navigating the design . 116
E.5 Advanced investigation techniques . 124
E.6 Conclusion . 131

F 012: Converting Verilog to BTOR page 133
F.1 Installation . 133
F.2 Quick start . 133
F.3 Detailed flow . 135
F.4 Example . 136
F.5 Limitations . 138
F.6 Conclusion . 138

ii

G Command line reference 139
G.1 abc - use ABC for technology mapping . 139
G.2 abc9 - use ABC9 for technology mapping . 143
G.3 abc9_exe - use ABC9 for technology mapping . 146
G.4 abc9_ops - helper functions for ABC9 . 147
G.5 add - add objects to the design . 149
G.6 aigmap - map logic to and-inverter-graph circuit . 149
G.7 alumacc - extract ALU and MACC cells . 150
G.8 anlogic_eqn - Anlogic: Calculate equations for luts . 150
G.9 anlogic_fixcarry - Anlogic: fix carry chain . 150
G.10 assertpmux - adds asserts for parallel muxes . 150
G.11 async2sync - convert async FF inputs to sync circuits . 150
G.12 attrmap - renaming attributes . 151
G.13 attrmvcp - move or copy attributes from wires to driving cells 151
G.14 autoname - automatically assign names to objects . 152
G.15 blackbox - convert modules into blackbox modules . 152
G.16 bmuxmap - transform $bmux cells to trees of $mux cells . 152
G.17 booth - map $mul cells to Booth multipliers . 153
G.18 bugpoint - minimize testcases . 153
G.19 bwmuxmap - replace $bwmux cells with equivalent logic . 154
G.20 cd - a shortcut for ‘select -module <name>’ . 154
G.21 check - check for obvious problems in the design . 155
G.22 chformal - change formal constraints of the design . 155
G.23 chparam - re-evaluate modules with new parameters . 156
G.24 chtype - change type of cells in the design . 157
G.25 clean - remove unused cells and wires . 157
G.26 clean_zerowidth - clean zero-width connections from the design 157
G.27 clk2fflogic - convert clocked FFs to generic $ff cells . 157
G.28 clkbufmap - insert clock buffers on clock networks . 158
G.29 connect - create or remove connections . 158
G.30 connect_rpc - connect to RPC frontend . 159
G.31 connwrappers - match width of input-output port pairs . 160
G.32 coolrunner2_fixup - insert necessary buffer cells for CoolRunner-II architecture 160
G.33 coolrunner2_sop - break $sop cells into ANDTERM/ORTERM cells 160
G.34 copy - copy modules in the design . 160
G.35 cover - print code coverage counters . 161
G.36 cutpoint - adds formal cut points to the design . 162
G.37 debug - run command with debug log messages enabled . 162
G.38 delete - delete objects in the design . 162
G.39 deminout - demote inout ports to input or output . 162
G.40 demuxmap - transform $demux cells to $eq + $mux cells . 162
G.41 design - save, restore and reset current design . 163
G.42 dffinit - set INIT param on FF cells . 164
G.43 dfflegalize - convert FFs to types supported by the target . 164
G.44 dfflibmap - technology mapping of flip-flops . 166
G.45 dffunmap - unmap clock enable and synchronous reset from FFs 166
G.46 dft_tag - create tagging logic for data flow tracking . 167
G.47 dump - print parts of the design in RTLIL format . 167
G.48 echo - turning echoing back of commands on and off . 167
G.49 edgetypes - list all types of edges in selection . 168
G.50 efinix_fixcarry - Efinix: fix carry chain . 168
G.51 equiv_add - add a $equiv cell . 168
G.52 equiv_induct - proving $equiv cells using temporal induction 168
G.53 equiv_make - prepare a circuit for equivalence checking . 169

iii

G.54 equiv_mark - mark equivalence checking regions . 169
G.55 equiv_miter - extract miter from equiv circuit . 170
G.56 equiv_opt - prove equivalence for optimized circuit . 170
G.57 equiv_purge - purge equivalence checking module . 171
G.58 equiv_remove - remove $equiv cells . 171
G.59 equiv_simple - try proving simple $equiv instances . 172
G.60 equiv_status - print status of equivalent checking module . 172
G.61 equiv_struct - structural equivalence checking . 172
G.62 eval - evaluate the circuit given an input . 173
G.63 exec - execute commands in the operating system shell . 173
G.64 expose - convert internal signals to module ports . 174
G.65 extract - find subcircuits and replace them with cells . 175
G.66 extract_counter - Extract GreenPak4 counter cells . 176
G.67 extract_fa - find and extract full/half adders . 177
G.68 extract_reduce - converts gate chains into $reduce_* cells 177
G.69 extractinv - extract explicit inverter cells for invertible cell pins 178
G.70 flatten - flatten design . 178
G.71 flowmap - pack LUTs with FlowMap . 179
G.72 fmcombine - combine two instances of a cell into one . 179
G.73 fminit - set init values/sequences for formal . 180
G.74 formalff - prepare FFs for formal . 181
G.75 freduce - perform functional reduction . 182
G.76 fsm - extract and optimize finite state machines . 182
G.77 fsm_detect - finding FSMs in design . 183
G.78 fsm_expand - expand FSM cells by merging logic into it . 184
G.79 fsm_export - exporting FSMs to KISS2 files . 184
G.80 fsm_extract - extracting FSMs in design . 184
G.81 fsm_info - print information on finite state machines . 185
G.82 fsm_map - mapping FSMs to basic logic . 185
G.83 fsm_opt - optimize finite state machines . 185
G.84 fsm_recode - recoding finite state machines . 185
G.85 fst2tb - generate testbench out of fst file . 186
G.86 future - resolve future sampled value functions . 186
G.87 gatemate_foldinv - fold inverters into Gatemate LUT trees 186
G.88 glift - create GLIFT models and optimization problems . 187
G.89 greenpak4_dffinv - merge greenpak4 inverters and DFF/latches 188
G.90 help - display help messages . 189
G.91 hierarchy - check, expand and clean up design hierarchy . 189
G.92 hilomap - technology mapping of constant hi- and/or lo-drivers 190
G.93 history - show last interactive commands . 191
G.94 ice40_braminit - iCE40: perform SB_RAM40_4K initialization from file 191
G.95 ice40_dsp - iCE40: map multipliers . 191
G.96 ice40_opt - iCE40: perform simple optimizations . 192
G.97 ice40_wrapcarry - iCE40: wrap carries . 192
G.98 insbuf - insert buffer cells for connected wires . 192
G.99 iopadmap - technology mapping of i/o pads (or buffers) . 193
G.100jny - write design and metadata . 194
G.101json - write design in JSON format . 194
G.102lattice_gsr - Lattice: handle GSR . 194
G.103log - print text and log files . 195
G.104logger - set logger properties . 195
G.105ls - list modules or objects in modules . 196
G.106ltp - print longest topological path . 196
G.107lut2mux - convert $lut to $_MUX_ . 196

iv

G.108maccmap - mapping macc cells . 197
G.109memory - translate memories to basic cells . 197
G.110memory_bmux2rom - convert muxes to ROMs . 197
G.111memory_bram - map memories to block rams . 197
G.112memory_collect - creating multi-port memory cells . 200
G.113memory_dff - merge input/output DFFs into memory read ports 200
G.114memory_libmap - map memories to cells . 200
G.115memory_map - translate multiport memories to basic cells 201
G.116memory_memx - emulate vlog sim behavior for mem ports 201
G.117memory_narrow - split up wide memory ports . 201
G.118memory_nordff - extract read port FFs from memories . 202
G.119memory_share - consolidate memory ports . 202
G.120memory_unpack - unpack multi-port memory cells . 202
G.121miter - automatically create a miter circuit . 202
G.122mutate - generate or apply design mutations . 204
G.123muxcover - cover trees of MUX cells with wider MUXes . 205
G.124muxpack - $mux/$pmux cascades to $pmux . 205
G.125nlutmap - map to LUTs of different sizes . 206
G.126onehot - optimize $eq cells for onehot signals . 206
G.127opt - perform simple optimizations . 206
G.128opt_clean - remove unused cells and wires . 207
G.129opt_demorgan - Optimize reductions with DeMorgan equivalents 207
G.130opt_dff - perform DFF optimizations . 208
G.131opt_expr - perform const folding and simple expression rewriting 208
G.132opt_ffinv - push inverters through FFs . 209
G.133opt_lut - optimize LUT cells . 209
G.134opt_lut_ins - discard unused LUT inputs . 209
G.135opt_mem - optimize memories . 210
G.136opt_mem_feedback - convert memory read-to-write port feedback paths to write enables . . 210
G.137opt_mem_priority - remove priority relations between write ports that can never collide . . 210
G.138opt_mem_widen - optimize memories where all ports are wide 210
G.139opt_merge - consolidate identical cells . 211
G.140opt_muxtree - eliminate dead trees in multiplexer trees . 211
G.141opt_reduce - simplify large MUXes and AND/OR gates . 211
G.142opt_share - merge mutually exclusive cells of the same type that share an input signal . . . 212
G.143paramap - renaming cell parameters . 212
G.144peepopt - collection of peephole optimizers . 213
G.145plugin - load and list loaded plugins . 213
G.146pmux2shiftx - transform $pmux cells to $shiftx cells . 213
G.147pmuxtree - transform $pmux cells to trees of $mux cells . 214
G.148portlist - list (top-level) ports . 214
G.149prep - generic synthesis script . 214
G.150printattrs - print attributes of selected objects . 216
G.151proc - translate processes to netlists . 216
G.152proc_arst - detect asynchronous resets . 217
G.153proc_clean - remove empty parts of processes . 217
G.154proc_dff - extract flip-flops from processes . 217
G.155proc_dlatch - extract latches from processes . 217
G.156proc_init - convert initial block to init attributes . 218
G.157proc_memwr - extract memory writes from processes . 218
G.158proc_mux - convert decision trees to multiplexers . 218
G.159proc_prune - remove redundant assignments . 218
G.160proc_rmdead - eliminate dead trees in decision trees . 218
G.161proc_rom - convert switches to ROMs . 219

v

G.162qbfsat - solve a 2QBF-SAT problem in the circuit . 219
G.163ql_bram_merge - Infers QuickLogic k6n10f BRAM pairs that can operate independently . . 220
G.164ql_bram_types - Change TDP36K type to subtypes . 220
G.165ql_dsp_io_regs - change types of QL_DSP2 depending on configuration 221
G.166ql_dsp_macc - infer QuickLogic multiplier-accumulator DSP cells 221
G.167ql_dsp_simd - merge QuickLogic K6N10f DSP pairs to operate in SIMD mode 221
G.168qwp - quadratic wirelength placer . 221
G.169read - load HDL designs . 222
G.170read_aiger - read AIGER file . 223
G.171read_blif - read BLIF file . 223
G.172read_ilang - (deprecated) alias of read_rtlil . 224
G.173read_json - read JSON file . 224
G.174read_liberty - read cells from liberty file . 224
G.175read_rtlil - read modules from RTLIL file . 225
G.176read_verilog - read modules from Verilog file . 225
G.177recover_names - Execute a lossy mapping command and recover original netnames 228
G.178rename - rename object in the design . 229
G.179rmports - remove module ports with no connections . 230
G.180sat - solve a SAT problem in the circuit . 230
G.181scatter - add additional intermediate nets . 233
G.182scc - detect strongly connected components (logic loops) . 234
G.183scratchpad - get/set values in the scratchpad . 234
G.184script - execute commands from file or wire . 235
G.185select - modify and view the list of selected objects . 236
G.186setattr - set/unset attributes on objects . 240
G.187setparam - set/unset parameters on objects . 240
G.188setundef - replace undef values with defined constants . 240
G.189share - perform sat-based resource sharing . 241
G.190shell - enter interactive command mode . 242
G.191show - generate schematics using graphviz . 243
G.192shregmap - map shift registers . 244
G.193sim - simulate the circuit . 245
G.194simplemap - mapping simple coarse-grain cells . 248
G.195splice - create explicit splicing cells . 248
G.196splitcells - split up multi-bit cells . 249
G.197splitnets - split up multi-bit nets . 249
G.198sta - perform static timing analysis . 250
G.199stat - print some statistics . 250
G.200submod - moving part of a module to a new submodule . 250
G.201supercover - add hi/lo cover cells for each wire bit . 251
G.202synth - generic synthesis script . 251
G.203synth_achronix - synthesis for Achronix Speedster22i FPGAs. 253
G.204synth_anlogic - synthesis for Anlogic FPGAs . 255
G.205synth_coolrunner2 - synthesis for Xilinx Coolrunner-II CPLDs 257
G.206synth_easic - synthesis for eASIC platform . 258
G.207synth_ecp5 - synthesis for ECP5 FPGAs . 260
G.208synth_efinix - synthesis for Efinix FPGAs . 263
G.209synth_fabulous - FABulous synthesis script . 265
G.210synth_gatemate - synthesis for Cologne Chip GateMate FPGAs 268
G.211synth_gowin - synthesis for Gowin FPGAs . 271
G.212synth_greenpak4 - synthesis for GreenPAK4 FPGAs . 273
G.213synth_ice40 - synthesis for iCE40 FPGAs . 275
G.214synth_intel - synthesis for Intel (Altera) FPGAs. 279
G.215synth_intel_alm - synthesis for ALM-based Intel (Altera) FPGAs. 281

vi

G.216synth_lattice - synthesis for Lattice FPGAs . 283
G.217synth_nexus - synthesis for Lattice Nexus FPGAs . 287
G.218synth_quicklogic - Synthesis for QuickLogic FPGAs . 290
G.219synth_sf2 - synthesis for SmartFusion2 and IGLOO2 FPGAs 293
G.220synth_xilinx - synthesis for Xilinx FPGAs . 295
G.221synthprop - synthesize SVA properties . 299
G.222tcl - execute a TCL script file . 299
G.223techmap - generic technology mapper . 300
G.224tee - redirect command output to file . 303
G.225test_abcloop - automatically test handling of loops in abc command 303
G.226test_autotb - generate simple test benches . 304
G.227test_cell - automatically test the implementation of a cell type 304
G.228test_pmgen - test pass for pmgen . 305
G.229torder - print cells in topological order . 306
G.230trace - redirect command output to file . 306
G.231tribuf - infer tri-state buffers . 306
G.232uniquify - create unique copies of modules . 307
G.233verific - load Verilog and VHDL designs using Verific . 307
G.234verilog_defaults - set default options for read_verilog . 313
G.235verilog_defines - define and undefine verilog defines . 313
G.236viz - visualize data flow graph . 314
G.237wbflip - flip the whitebox attribute . 315
G.238wreduce - reduce the word size of operations if possible . 315
G.239write_aiger - write design to AIGER file . 316
G.240write_blif - write design to BLIF file . 316
G.241write_btor - write design to BTOR file . 318
G.242write_cxxrtl - convert design to C++ RTL simulation . 318
G.243write_edif - write design to EDIF netlist file . 323
G.244write_file - write a text to a file . 324
G.245write_firrtl - write design to a FIRRTL file . 324
G.246write_ilang - (deprecated) alias of write_rtlil . 324
G.247write_intersynth - write design to InterSynth netlist file . 324
G.248write_jny - generate design metadata . 325
G.249write_json - write design to a JSON file . 325
G.250write_rtlil - write design to RTLIL file . 330
G.251write_simplec - convert design to simple C code . 330
G.252write_smt2 - write design to SMT-LIBv2 file . 331
G.253write_smv - write design to SMV file . 334
G.254write_spice - write design to SPICE netlist file . 334
G.255write_table - write design as connectivity table . 335
G.256write_verilog - write design to Verilog file . 335
G.257write_xaiger - write design to XAIGER file . 337
G.258xilinx_dffopt - Xilinx: optimize FF control signal usage . 337
G.259xilinx_dsp - Xilinx: pack resources into DSPs . 338
G.260xilinx_srl - Xilinx shift register extraction . 338
G.261xprop - formal x propagation . 339
G.262zinit - add inverters so all FF are zero-initialized . 340

Bibliography 341

vii

viii

YosysHQ Yosys

Abstract

Most of today’s digital design is done in HDL code (mostly Verilog or VHDL) and with the help of HDL
synthesis tools.

In special cases such as synthesis for coarse-grain cell libraries or when testing new synthesis algorithms
it might be necessary to write a custom HDL synthesis tool or add new features to an existing one. In
these cases the availability of a Free and Open Source (FOSS) synthesis tool that can be used as basis for
custom tools would be helpful.

In the absence of such a tool, the Yosys Open SYnthesis Suite (Yosys) was developed. This document
covers the design and implementation of this tool. At the moment the main focus of Yosys lies on the
high-level aspects of digital synthesis. The pre-existing FOSS logic-synthesis tool ABC is used by Yosys
to perform advanced gate-level optimizations.

An evaluation of Yosys based on real-world designs is included. It is shown that Yosys can be used as-is
to synthesize such designs. The results produced by Yosys in this tests where successfully verified using
formal verification and are comparable in quality to the results produced by a commercial synthesis tool.

This document was originally published as bachelor thesis at the Vienna University of Technology [Wol13].

MANUAL 1

YosysHQ Yosys

2 MANUAL

CHAPTER

ONE

INTRODUCTION

This document presents the Free and Open Source (FOSS) Verilog HDL synthesis tool “Yosys”. Its design
and implementation as well as its performance on real-world designs is discussed in this document.

1.1 History of Yosys

A Hardware Description Language (HDL) is a computer language used to describe circuits. A HDL synthesis
tool is a computer program that takes a formal description of a circuit written in an HDL as input and
generates a netlist that implements the given circuit as output.

Currently the most widely used and supported HDLs for digital circuits are Verilog [A+02, A+06] and VHDL
(VHSIC HDL, where VHSIC is an acronym for Very-High-Speed Integrated Circuits) [A+04, A+09]. Both
HDLs are used for test and verification purposes as well as logic synthesis, resulting in a set of synthesizable
and a set of non-synthesizable language features. In this document we only look at the synthesizable subset
of the language features.

In recent work on heterogeneous coarse-grain reconfigurable logic [WGS+12] the need for a custom
application-specific HDL synthesis tool emerged. It was soon realised that a synthesis tool that under-
stood Verilog or VHDL would be preferred over a synthesis tool for a custom HDL. Given an existing Verilog
or VHDL front end, the work for writing the necessary additional features and integrating them in an existing
tool can be estimated to be about the same as writing a new tool with support for a minimalistic custom
HDL.

The proposed custom HDL synthesis tool should be licensed under a Free and Open Source Software (FOSS)
licence. So an existing FOSS Verilog or VHDL synthesis tool would have been needed as basis to build upon.
The main advantages of choosing Verilog or VHDL is the ability to synthesize existing HDL code and to
mitigate the requirement for circuit-designers to learn a new language. In order to take full advantage of any
existing FOSS Verilog or VHDL tool, such a tool would have to provide a feature-complete implementation
of the synthesizable HDL subset.

Basic RTL synthesis is a well understood field [HS96]. Lexing, parsing and processing of computer languages
[ASU86] is a thoroughly researched field. All the information required to write such tools has been openly
available for a long time, and it is therefore likely that a FOSS HDL synthesis tool with a feature-complete
Verilog or VHDL front end must exist which can be used as a basis for a custom RTL synthesis tool.

Due to the author’s preference for Verilog over VHDL it was decided early on to go for Verilog instead
of VHDL1. So the existing FOSS Verilog synthesis tools were evaluated. The results of this evaluation are
utterly devastating. Therefore a completely new Verilog synthesis tool was implemented and is recommended
as basis for custom synthesis tools. This is the tool that is discussed in this document.

1 A quick investigation into FOSS VHDL tools yielded similar grim results for FOSS VHDL synthesis tools.

3

YosysHQ Yosys

1.2 Structure of this document

The structure of this document is as follows:

Chapter 1 is this introduction.

Chapter 2 covers a short introduction to the world of HDL synthesis. Basic principles and the terminology
are outlined in this chapter.

Chapter 3 gives the quickest possible outline to how the problem of implementing a HDL synthesis tool is
approached in the case of Yosys.

Chapter 4 contains a more detailed overview of the implementation of Yosys. This chapter covers the data
structures used in Yosys to represent a design in detail and is therefore recommended reading for everyone
who is interested in understanding the Yosys internals.

Chapter 5 covers the internal cell library used by Yosys. This is especially important knowledge for anyone
who wants to understand the intermediate netlists used internally by Yosys.

Chapter 6 gives a tour to the internal APIs of Yosys. This is recommended reading for everyone who actually
wants to read or write Yosys source code. The chapter concludes with an example loadable module for Yosys.

Chapters 7, 8 and 9 cover three important pieces of the synthesis pipeline: The Verilog frontend, the
optimization passes and the technology mapping to the target architecture, respectively.

Various appendices, including a Command line reference, complete this document.

4 Chapter 1. Introduction

CHAPTER

TWO

BASIC PRINCIPLES

This chapter contains a short introduction to the basic principles of digital circuit synthesis.

2.1 Levels of abstraction

Digital circuits can be represented at different levels of abstraction. During the design process a circuit is
usually first specified using a higher level abstraction. Implementation can then be understood as finding a
functionally equivalent representation at a lower abstraction level. When this is done automatically using
software, the term synthesis is used.

So synthesis is the automatic conversion of a high-level representation of a circuit to a functionally equivalent
low-level representation of a circuit. Figure 2.1 lists the different levels of abstraction and how they relate
to different kinds of synthesis.

System Level

High Level

Behavioral Level

Register-Transfer Level (RTL)

Logical Gate Level

Physical Gate Level

Switch Level

System Design

High Level Synthesis (HLS)

Behavioral Synthesis

RTL Synthesis

Logic Synthesis

Cell Library

Yosys

Fig. 2.1: Different levels of abstraction and synthesis.

Regardless of the way a lower level representation of a circuit is obtained (synthesis or manual design), the
lower level representation is usually verified by comparing simulation results of the lower level and the higher
level representation1. Therefore even if no synthesis is used, there must still be a simulatable representation
of the circuit in all levels to allow for verification of the design.

1 In recent years formal equivalence checking also became an important verification method for validating RTL and lower
abstraction representation of the design.

5

YosysHQ Yosys

Note: The exact meaning of terminology such as “High-Level” is of course not fixed over time. For example
the HDL “ABEL” was first introduced in 1985 as “A High-Level Design Language for Programmable Logic
Devices” [LHBB85], but would not be considered a “High-Level Language” today.

2.1.1 System level

The System Level abstraction of a system only looks at its biggest building blocks like CPUs and computing
cores. At this level the circuit is usually described using traditional programming languages like C/C++ or
Matlab. Sometimes special software libraries are used that are aimed at simulation circuits on the system
level, such as SystemC.

Usually no synthesis tools are used to automatically transform a system level representation of a circuit to
a lower-level representation. But system level design tools exist that can be used to connect system level
building blocks.

The IEEE 1685-2009 standard defines the IP-XACT file format that can be used to represent designs on the
system level and building blocks that can be used in such system level designs. [A+10]

2.1.2 High level

The high-level abstraction of a system (sometimes referred to as algorithmic level) is also often represented
using traditional programming languages, but with a reduced feature set. For example when representing a
design at the high level abstraction in C, pointers can only be used to mimic concepts that can be found in
hardware, such as memory interfaces. Full featured dynamic memory management is not allowed as it has
no corresponding concept in digital circuits.

Tools exist to synthesize high level code (usually in the form of C/C++/SystemC code with additional
metadata) to behavioural HDL code (usually in the form of Verilog or VHDL code). Aside from the many
commercial tools for high level synthesis there are also a number of FOSS tools for high level synthesis .

2.1.3 Behavioural level

At the behavioural abstraction level a language aimed at hardware description such as Verilog or VHDL is
used to describe the circuit, but so-called behavioural modelling is used in at least part of the circuit descrip-
tion. In behavioural modelling there must be a language feature that allows for imperative programming to
be used to describe data paths and registers. This is the always-block in Verilog and the process-block in
VHDL.

In behavioural modelling, code fragments are provided together with a sensitivity list; a list of signals and
conditions. In simulation, the code fragment is executed whenever a signal in the sensitivity list changes
its value or a condition in the sensitivity list is triggered. A synthesis tool must be able to transfer this
representation into an appropriate datapath followed by the appropriate types of register.

For example consider the following Verilog code fragment:

1 always @(posedge clk)
2 y <= a + b;

In simulation the statement y <= a + b is executed whenever a positive edge on the signal clk is detected.
The synthesis result however will contain an adder that calculates the sum a + b all the time, followed by
a d-type flip-flop with the adder output on its D-input and the signal y on its Q-output.

Usually the imperative code fragments used in behavioural modelling can contain statements for conditional
execution (if- and case-statements in Verilog) as well as loops, as long as those loops can be completely
unrolled.

6 Chapter 2. Basic principles

YosysHQ Yosys

Interestingly there seems to be no other FOSS Tool that is capable of performing Verilog or VHDL be-
havioural syntheses besides Yosys.

2.1.4 Register-Transfer Level (RTL)

On the Register-Transfer Level the design is represented by combinatorial data paths and registers (usually
d-type flip flops). The following Verilog code fragment is equivalent to the previous Verilog example, but is
in RTL representation:

1 assign tmp = a + b; // combinatorial data path
2

3 always @(posedge clk) // register
4 y <= tmp;

A design in RTL representation is usually stored using HDLs like Verilog and VHDL. But only a very limited
subset of features is used, namely minimalistic always-blocks (Verilog) or process-blocks (VHDL) that model
the register type used and unconditional assignments for the datapath logic. The use of HDLs on this level
simplifies simulation as no additional tools are required to simulate a design in RTL representation.

Many optimizations and analyses can be performed best at the RTL level. Examples include FSM detection
and optimization, identification of memories or other larger building blocks and identification of shareable
resources.

Note that RTL is the first abstraction level in which the circuit is represented as a graph of circuit elements
(registers and combinatorial cells) and signals. Such a graph, when encoded as list of cells and connections,
is called a netlist.

RTL synthesis is easy as each circuit node element in the netlist can simply be replaced with an equivalent
gate-level circuit. However, usually the term RTL synthesis does not only refer to synthesizing an RTL
netlist to a gate level netlist but also to performing a number of highly sophisticated optimizations within
the RTL representation, such as the examples listed above.

A number of FOSS tools exist that can perform isolated tasks within the domain of RTL synthesis steps.
But there seems to be no FOSS tool that covers a wide range of RTL synthesis operations.

2.1.5 Logical gate level

At the logical gate level the design is represented by a netlist that uses only cells from a small number
of single-bit cells, such as basic logic gates (AND, OR, NOT, XOR, etc.) and registers (usually D-Type
Flip-flops).

A number of netlist formats exists that can be used on this level, e.g. the Electronic Design Interchange
Format (EDIF), but for ease of simulation often a HDL netlist is used. The latter is a HDL file (Verilog or
VHDL) that only uses the most basic language constructs for instantiation and connecting of cells.

There are two challenges in logic synthesis: First finding opportunities for optimizations within the gate level
netlist and second the optimal (or at least good) mapping of the logic gate netlist to an equivalent netlist of
physically available gate types.

The simplest approach to logic synthesis is two-level logic synthesis, where a logic function is converted into a
sum-of-products representation, e.g. using a Karnaugh map. This is a simple approach, but has exponential
worst-case effort and cannot make efficient use of physical gates other than AND/NAND-, OR/NOR- and
NOT-Gates.

Therefore modern logic synthesis tools utilize much more complicated multi-level logic synthesis algorithms
[BHSV90]. Most of these algorithms convert the logic function to a Binary-Decision-Diagram (BDD) or

2.1. Levels of abstraction 7

YosysHQ Yosys

And-Inverter-Graph (AIG) and work from that representation. The former has the advantage that it has a
unique normalized form. The latter has much better worst case performance and is therefore better suited
for the synthesis of large logic functions.

Good FOSS tools exists for multi-level logic synthesis .

Yosys contains basic logic synthesis functionality but can also use ABC for the logic synthesis step. Using
ABC is recommended.

2.1.6 Physical gate level

On the physical gate level only gates are used that are physically available on the target architecture. In some
cases this may only be NAND, NOR and NOT gates as well as D-Type registers. In other cases this might
include cells that are more complex than the cells used at the logical gate level (e.g. complete half-adders).
In the case of an FPGA-based design the physical gate level representation is a netlist of LUTs with optional
output registers, as these are the basic building blocks of FPGA logic cells.

For the synthesis tool chain this abstraction is usually the lowest level. In case of an ASIC-based design
the cell library might contain further information on how the physical cells map to individual switches
(transistors).

2.1.7 Switch level

A switch level representation of a circuit is a netlist utilizing single transistors as cells. Switch level modelling
is possible in Verilog and VHDL, but is seldom used in modern designs, as in modern digital ASIC or FPGA
flows the physical gates are considered the atomic build blocks of the logic circuit.

2.1.8 Yosys

Yosys is a Verilog HDL synthesis tool. This means that it takes a behavioural design description as input
and generates an RTL, logical gate or physical gate level description of the design as output. Yosys’ main
strengths are behavioural and RTL synthesis. A wide range of commands (synthesis passes) exist within
Yosys that can be used to perform a wide range of synthesis tasks within the domain of behavioural, rtl and
logic synthesis. Yosys is designed to be extensible and therefore is a good basis for implementing custom
synthesis tools for specialised tasks.

2.2 Features of synthesizable Verilog

The subset of Verilog [A+06] that is synthesizable is specified in a separate IEEE standards document, the
IEEE standard 1364.1-2002 [A+02]. This standard also describes how certain language constructs are to be
interpreted in the scope of synthesis.

This section provides a quick overview of the most important features of synthesizable Verilog, structured
in order of increasing complexity.

8 Chapter 2. Basic principles

YosysHQ Yosys

2.2.1 Structural Verilog

Structural Verilog (also known as Verilog Netlists) is a Netlist in Verilog syntax. Only the following language
constructs are used in this case:

• Constant values

• Wire and port declarations

• Static assignments of signals to other signals

• Cell instantiations

Many tools (especially at the back end of the synthesis chain) only support structural Verilog as input. ABC
is an example of such a tool. Unfortunately there is no standard specifying what Structural Verilog actually
is, leading to some confusion about what syntax constructs are supported in structural Verilog when it comes
to features such as attributes or multi-bit signals.

2.2.2 Expressions in Verilog

In all situations where Verilog accepts a constant value or signal name, expressions using arithmetic oper-
ations such as +, - and *, boolean operations such as & (AND), | (OR) and ^ (XOR) and many others
(comparison operations, unary operator, etc.) can also be used.

During synthesis these operators are replaced by cells that implement the respective function.

Many FOSS tools that claim to be able to process Verilog in fact only support basic structural Verilog and
simple expressions. Yosys can be used to convert full featured synthesizable Verilog to this simpler subset,
thus enabling such applications to be used with a richer set of Verilog features.

2.2.3 Behavioural modelling

Code that utilizes the Verilog always statement is using Behavioural Modelling. In behavioural modelling,
a circuit is described by means of imperative program code that is executed on certain events, namely any
change, a rising edge, or a falling edge of a signal. This is a very flexible construct during simulation but is
only synthesizable when one of the following is modelled:

• Asynchronous or latched logic
In this case the sensitivity list must contain all expressions that are used within the always block.
The syntax @* can be used for these cases. Examples of this kind include:

1 // asynchronous
2 always @* begin
3 if (add_mode)
4 y <= a + b;
5 else
6 y <= a - b;
7 end
8

9 // latched
10 always @* begin
11 if (!hold)
12 y <= a + b;
13 end

2.2. Features of synthesizable Verilog 9

YosysHQ Yosys

Note that latched logic is often considered bad style and in many cases just the result of sloppy HDL
design. Therefore many synthesis tools generate warnings whenever latched logic is generated.

• Synchronous logic (with optional synchronous reset)
This is logic with d-type flip-flops on the output. In this case the sensitivity list must only contain
the respective clock edge. Example:

1 // counter with synchronous reset
2 always @(posedge clk) begin
3 if (reset)
4 y <= 0;
5 else
6 y <= y + 1;
7 end

• Synchronous logic with asynchronous reset
This is logic with d-type flip-flops with asynchronous resets on the output. In this case the sensitivity
list must only contain the respective clock and reset edges. The values assigned in the reset branch
must be constant. Example:

1 // counter with asynchronous reset
2 always @(posedge clk, posedge reset) begin
3 if (reset)
4 y <= 0;
5 else
6 y <= y + 1;
7 end

Many synthesis tools support a wider subset of flip-flops that can be modelled using always-statements
(including Yosys). But only the ones listed above are covered by the Verilog synthesis standard and when
writing new designs one should limit herself or himself to these cases.

In behavioural modelling, blocking assignments (=) and non-blocking assignments (<=) can be used. The
concept of blocking vs. non-blocking assignment is one of the most misunderstood constructs in Verilog
[CI00].

The blocking assignment behaves exactly like an assignment in any imperative programming language, while
with the non-blocking assignment the right hand side of the assignment is evaluated immediately but the
actual update of the left hand side register is delayed until the end of the time-step. For example the Verilog
code a <= b; b <= a; exchanges the values of the two registers.

10 Chapter 2. Basic principles

YosysHQ Yosys

2.2.4 Functions and tasks

Verilog supports Functions and Tasks to bundle statements that are used in multiple places (similar to
Procedures in imperative programming). Both constructs can be implemented easily by substituting the
function/task-call with the body of the function or task.

2.2.5 Conditionals, loops and generate-statements

Verilog supports if-else-statements and for-loops inside always-statements.

It also supports both features in generate-statements on the module level. This can be used to selectively
enable or disable parts of the module based on the module parameters (if-else) or to generate a set of
similar subcircuits (for).

While the if-else-statement inside an always-block is part of behavioural modelling, the three other cases
are (at least for a synthesis tool) part of a built-in macro processor. Therefore it must be possible for
the synthesis tool to completely unroll all loops and evaluate the condition in all if-else-statement in
generate-statements using const-folding..

2.2.6 Arrays and memories

Verilog supports arrays. This is in general a synthesizable language feature. In most cases arrays can be
synthesized by generating addressable memories. However, when complex or asynchronous access patterns
are used, it is not possible to model an array as memory. In these cases the array must be modelled using
individual signals for each word and all accesses to the array must be implemented using large multiplexers.

In some cases it would be possible to model an array using memories, but it is not desired. Consider the
following delay circuit:

1 module (clk, in_data, out_data);
2

3 parameter BITS = 8;
4 parameter STAGES = 4;
5

6 input clk;
7 input [BITS-1:0] in_data;
8 output [BITS-1:0] out_data;
9 reg [BITS-1:0] ffs [STAGES-1:0];

10

11 integer i;
12 always @(posedge clk) begin
13 ffs[0] <= in_data;
14 for (i = 1; i < STAGES; i = i+1)
15 ffs[i] <= ffs[i-1];
16 end
17

18 assign out_data = ffs[STAGES-1];
19

20 endmodule

This could be implemented using an addressable memory with STAGES input and output ports. A better
implementation would be to use a simple chain of flip-flops (a so-called shift register). This better imple-
mentation can either be obtained by first creating a memory-based implementation and then optimizing it

2.2. Features of synthesizable Verilog 11

YosysHQ Yosys

based on the static address signals for all ports or directly identifying such situations in the language front
end and converting all memory accesses to direct accesses to the correct signals.

2.3 Challenges in digital circuit synthesis

This section summarizes the most important challenges in digital circuit synthesis. Tools can be characterized
by how well they address these topics.

2.3.1 Standards compliance

The most important challenge is compliance with the HDL standards in question (in case of Verilog the
IEEE Standards 1364.1-2002 and 1364-2005). This can be broken down in two items:

• Completeness of implementation of the standard

• Correctness of implementation of the standard

Completeness is mostly important to guarantee compatibility with existing HDL code. Once a design has
been verified and tested, HDL designers are very reluctant regarding changes to the design, even if it is only
about a few minor changes to work around a missing feature in a new synthesis tool.

Correctness is crucial. In some areas this is obvious (such as correct synthesis of basic behavioural models).
But it is also crucial for the areas that concern minor details of the standard, such as the exact rules for
handling signed expressions, even when the HDL code does not target different synthesis tools. This is
because (unlike software source code that is only processed by compilers), in most design flows HDL code is
not only processed by the synthesis tool but also by one or more simulators and sometimes even a formal
verification tool. It is key for this verification process that all these tools use the same interpretation for the
HDL code.

2.3.2 Optimizations

Generally it is hard to give a one-dimensional description of how well a synthesis tool optimizes the design.
First of all because not all optimizations are applicable to all designs and all synthesis tasks. Some opti-
mizations work (best) on a coarse-grained level (with complex cells such as adders or multipliers) and others
work (best) on a fine-grained level (single bit gates). Some optimizations target area and others target speed.
Some work well on large designs while others don’t scale well and can only be applied to small designs.

A good tool is capable of applying a wide range of optimizations at different levels of abstraction and gives
the designer control over which optimizations are performed (or skipped) and what the optimization goals
are.

2.3.3 Technology mapping

Technology mapping is the process of converting the design into a netlist of cells that are available in the
target architecture. In an ASIC flow this might be the process-specific cell library provided by the fab. In
an FPGA flow this might be LUT cells as well as special function units such as dedicated multipliers. In a
coarse-grain flow this might even be more complex special function units.

An open and vendor independent tool is especially of interest if it supports a wide range of different types
of target architectures.

12 Chapter 2. Basic principles

YosysHQ Yosys

2.4 Script-based synthesis flows

A digital design is usually started by implementing a high-level or system-level simulation of the desired
function. This description is then manually transformed (or re-implemented) into a synthesizable lower-level
description (usually at the behavioural level) and the equivalence of the two representations is verified by
simulating both and comparing the simulation results.

Then the synthesizable description is transformed to lower-level representations using a series of tools and
the results are again verified using simulation. This process is illustrated in Fig. 2.2.

System Level
Model

Behavioral
Model

RTL
Model

Gate-Level
Model

synthesis synthesis

verify verify verify

Fig. 2.2: Typical design flow. Green boxes represent manually created models. Orange boxes represent
modesl generated by synthesis tools.

In this example the System Level Model and the Behavioural Model are both manually written design
files. After the equivalence of system level model and behavioural model has been verified, the lower level
representations of the design can be generated using synthesis tools. Finally the RTL Model and the Gate-
Level Model are verified and the design process is finished.

However, in any real-world design effort there will be multiple iterations for this design process. The reason
for this can be the late change of a design requirement or the fact that the analysis of a low-abstraction
model (e.g. gate-level timing analysis) revealed that a design change is required in order to meet the design
requirements (e.g. maximum possible clock speed).

Whenever the behavioural model or the system level model is changed their equivalence must be re-verified
by re-running the simulations and comparing the results. Whenever the behavioural model is changed the
synthesis must be re-run and the synthesis results must be re-verified.

In order to guarantee reproducibility it is important to be able to re-run all automatic steps in a design
project with a fixed set of settings easily. Because of this, usually all programs used in a synthesis flow can
be controlled using scripts. This means that all functions are available via text commands. When such a
tool provides a GUI, this is complementary to, and not instead of, a command line interface.

Usually a synthesis flow in an UNIX/Linux environment would be controlled by a shell script that calls all
required tools (synthesis and simulation/verification in this example) in the correct order. Each of these
tools would be called with a script file containing commands for the respective tool. All settings required
for the tool would be provided by these script files so that no manual interaction would be necessary. These
script files are considered design sources and should be kept under version control just like the source code
of the system level and the behavioural model.

2.4. Script-based synthesis flows 13

YosysHQ Yosys

2.5 Methods from compiler design

Some parts of synthesis tools involve problem domains that are traditionally known from compiler design.
This section addresses some of these domains.

2.5.1 Lexing and parsing

The best known concepts from compiler design are probably lexing and parsing. These are two methods
that together can be used to process complex computer languages easily. [ASU86]

A lexer consumes single characters from the input and generates a stream of lexical tokens that consist of a
type and a value. For example the Verilog input assign foo = bar + 42; might be translated by the lexer
to the list of lexical tokens given in Tab. 2.1.

Table 2.1: Exemplary token list for the statement assign foo =
bar + 42;

Token-Type Token-Value
TOK_ASSIGN -
TOK_IDENTIFIER “foo”
TOK_EQ -
TOK_IDENTIFIER “bar”
TOK_PLUS -
TOK_NUMBER 42
TOK_SEMICOLON -

The lexer is usually generated by a lexer generator (e.g. flex) from a description file that is using regular
expressions to specify the text pattern that should match the individual tokens.

The lexer is also responsible for skipping ignored characters (such as whitespace outside string constants and
comments in the case of Verilog) and converting the original text snippet to a token value.

Note that individual keywords use different token types (instead of a keyword type with different token val-
ues). This is because the parser usually can only use the Token-Type to make a decision on the grammatical
role of a token.

The parser then transforms the list of tokens into a parse tree that closely resembles the productions from
the computer languages grammar. As the lexer, the parser is also typically generated by a code generator
(e.g. bison) from a grammar description in Backus-Naur Form (BNF).

Let’s consider the following BNF (in Bison syntax):

1 assign_stmt: TOK_ASSIGN TOK_IDENTIFIER TOK_EQ expr TOK_SEMICOLON;
2 expr: TOK_IDENTIFIER | TOK_NUMBER | expr TOK_PLUS expr;

The parser converts the token list to the parse tree in Fig. 2.3. Note that the parse tree never actually
exists as a whole as data structure in memory. Instead the parser calls user-specified code snippets (so-called
reduce-functions) for all inner nodes of the parse tree in depth-first order.

In some very simple applications (e.g. code generation for stack machines) it is possible to perform the task at
hand directly in the reduce functions. But usually the reduce functions are only used to build an in-memory
data structure with the relevant information from the parse tree. This data structure is called an abstract
syntax tree (AST).

14 Chapter 2. Basic principles

YosysHQ Yosys

assign stmt

TOK ASSIGN

TOK IDENTIFIER

TOK EQ

expr

TOK SEMICOLON

expr TOK PLUS expr

TOK IDENTIFIER TOK NUMBER

Fig. 2.3: Example parse tree for the Verilog expression assign foo = bar + 42;

The exact format for the abstract syntax tree is application specific (while the format of the parse tree and
token list are mostly dictated by the grammar of the language at hand). Figure 2.4 illustrates what an AST
for the parse tree in Fig. 2.3 could look like.

Usually the AST is then converted into yet another representation that is more suitable for further processing.
In compilers this is often an assembler-like three-address-code intermediate representation. [ASU86]

ASSIGN

ID: foo PLUS

ID: bar CONST: 42

Fig. 2.4: Example abstract syntax tree for the Verilog expression assign foo = bar + 42;

2.5.2 Multi-pass compilation

Complex problems are often best solved when split up into smaller problems. This is certainly true for
compilers as well as for synthesis tools. The components responsible for solving the smaller problems can be
connected in two different ways: through Single-Pass Pipelining and by using Multiple Passes.

Traditionally a parser and lexer are connected using the pipelined approach: The lexer provides a function
that is called by the parser. This function reads data from the input until a complete lexical token has been
read. Then this token is returned to the parser. So the lexer does not first generate a complete list of lexical
tokens and then pass it to the parser. Instead they run concurrently and the parser can consume tokens as
the lexer produces them.

2.5. Methods from compiler design 15

YosysHQ Yosys

The single-pass pipelining approach has the advantage of lower memory footprint (at no time must the
complete design be kept in memory) but has the disadvantage of tighter coupling between the interacting
components.

Therefore single-pass pipelining should only be used when the lower memory footprint is required or the
components are also conceptually tightly coupled. The latter certainly is the case for a parser and its lexer.
But when data is passed between two conceptually loosely coupled components it is often beneficial to use
a multi-pass approach.

In the multi-pass approach the first component processes all the data and the result is stored in a in-memory
data structure. Then the second component is called with this data. This reduces complexity, as only one
component is running at a time. It also improves flexibility as components can be exchanged easier.

Most modern compilers are multi-pass compilers.

2.5.3 Static Single Assignment (SSA) form

In imperative programming (and behavioural HDL design) it is possible to assign the same variable multiple
times. This can either mean that the variable is independently used in two different contexts or that the
final value of the variable depends on a condition.

The following examples show C code in which one variable is used independently in two different contexts:

1 void demo1()
2 {
3 int a = 1;
4 printf("%d\n", a);
5

6 a = 2;
7 printf("%d\n", a);
8 }

void demo1()
{

int a = 1;
printf("%d\n", a);

int b = 2;
printf("%d\n", b);

}

1 void demo2(bool foo)
2 {
3 int a;
4 if (foo) {
5 a = 23;
6 printf("%d\n", a);
7 } else {
8 a = 42;
9 printf("%d\n", a);

10 }
11 }

16 Chapter 2. Basic principles

YosysHQ Yosys

void demo2(bool foo)
{

int a, b;
if (foo) {

a = 23;
printf("%d\n", a);

} else {
b = 42;
printf("%d\n", b);

}
}

In both examples the left version (only variable a) and the right version (variables a and b) are equivalent.
Therefore it is desired for further processing to bring the code in an equivalent form for both cases.

In the following example the variable is assigned twice but it cannot be easily replaced by two variables:

void demo3(bool foo)
{

int a = 23
if (foo)

a = 42;
printf("%d\n", a);

}

Static single assignment (SSA) form is a representation of imperative code that uses identical representations
for the left and right version of demos 1 and 2, but can still represent demo 3. In SSA form each assignment
assigns a new variable (usually written with an index). But it also introduces a special Φ-function to merge
the different instances of a variable when needed. In C-pseudo-code the demo 3 would be written as follows
using SSA from:

void demo3(bool foo)
{

int a_1, a_2, a_3;
a_1 = 23
if (foo)

a_2 = 42;
a_3 = phi(a_1, a_2);
printf("%d\n", a_3);

}

The Φ-function is usually interpreted as “these variables must be stored in the same memory location” during
code generation. Most modern compilers for imperative languages such as C/C++ use SSA form for at least
some of its passes as it is very easy to manipulate and analyse.

2.5. Methods from compiler design 17

YosysHQ Yosys

18 Chapter 2. Basic principles

CHAPTER

THREE

APPROACH

Yosys is a tool for synthesising (behavioural) Verilog HDL code to target architecture netlists. Yosys aims at
a wide range of application domains and thus must be flexible and easy to adapt to new tasks. This chapter
covers the general approach followed in the effort to implement this tool.

3.1 Data- and control-flow

The data- and control-flow of a typical synthesis tool is very similar to the data- and control-flow of a typical
compiler: different subsystems are called in a predetermined order, each consuming the data generated by
the last subsystem and generating the data for the next subsystem (see Fig. 3.1).

F
ro
n
te
n
d

P
as
s

P
as
s

P
as
s

B
ac
ke
n
d

HDL Internal Format(s) Netlist

High-Level Low-Level

Fig. 3.1: General data- and control-flow of a synthesis tool

The first subsystem to be called is usually called a frontend. It does not process the data generated by
another subsystem but instead reads the user input—in the case of a HDL synthesis tool, the behavioural
HDL code.

The subsystems that consume data from previous subsystems and produce data for the next subsystems
(usually in the same or a similar format) are called passes.

The last subsystem that is executed transforms the data generated by the last pass into a suitable output
format and writes it to a disk file. This subsystem is usually called the backend.

In Yosys all frontends, passes and backends are directly available as commands in the synthesis script. Thus
the user can easily create a custom synthesis flow just by calling passes in the right order in a synthesis
script.

19

YosysHQ Yosys

3.2 Internal formats in Yosys

Yosys uses two different internal formats. The first is used to store an abstract syntax tree (AST) of a
Verilog input file. This format is simply called AST and is generated by the Verilog Frontend. This data
structure is consumed by a subsystem called AST Frontend1. This AST Frontend then generates a design in
Yosys’ main internal format, the Register-Transfer-Level-Intermediate-Language (RTLIL) representation. It
does that by first performing a number of simplifications within the AST representation and then generating
RTLIL from the simplified AST data structure.

The RTLIL representation is used by all passes as input and outputs. This has the following advantages
over using different representational formats between different passes:

• The passes can be rearranged in a different order and passes can be removed or inserted.

• Passes can simply pass-thru the parts of the design they don’t change without the need to convert
between formats. In fact Yosys passes output the same data structure they received as input and
performs all changes in place.

• All passes use the same interface, thus reducing the effort required to understand a pass when reading
the Yosys source code, e.g. when adding additional features.

The RTLIL representation is basically a netlist representation with the following additional features:

• An internal cell library with fixed-function cells to represent RTL datapath and register cells as well
as logical gate-level cells (single-bit gates and registers).

• Support for multi-bit values that can use individual bits from wires as well as constant bits to represent
coarse-grain netlists.

• Support for basic behavioural constructs (if-then-else structures and multi-case switches with a sensi-
tivity list for updating the outputs).

• Support for multi-port memories.

The use of RTLIL also has the disadvantage of having a very powerful format between all passes, even when
doing gate-level synthesis where the more advanced features are not needed. In order to reduce complexity
for passes that operate on a low-level representation, these passes check the features used in the input RTLIL
and fail to run when unsupported high-level constructs are used. In such cases a pass that transforms the
higher-level constructs to lower-level constructs must be called from the synthesis script first.

3.3 Typical use case

The following example script may be used in a synthesis flow to convert the behavioural Verilog code from
the input file design.v to a gate-level netlist synth.v using the cell library described by the Liberty file :

1 # read input file to internal representation
2 read_verilog design.v
3

4 # convert high-level behavioral parts ("processes") to d-type flip-flops and muxes
5 proc
6

7 # perform some simple optimizations
8 opt
9

(continues on next page)

1 In Yosys the term pass is only used to refer to commands that operate on the RTLIL data structure.

20 Chapter 3. Approach

YosysHQ Yosys

(continued from previous page)

10 # convert high-level memory constructs to d-type flip-flops and multiplexers
11 memory
12

13 # perform some simple optimizations
14 opt
15

16 # convert design to (logical) gate-level netlists
17 techmap
18

19 # perform some simple optimizations
20 opt
21

22 # map internal register types to the ones from the cell library
23 dfflibmap -liberty cells.lib
24

25 # use ABC to map remaining logic to cells from the cell library
26 abc -liberty cells.lib
27

28 # cleanup
29 opt
30

31 # write results to output file
32 write_verilog synth.v

A detailed description of the commands available in Yosys can be found in Command line reference.

3.3. Typical use case 21

YosysHQ Yosys

22 Chapter 3. Approach

CHAPTER

FOUR

IMPLEMENTATION OVERVIEW

Yosys is an extensible open source hardware synthesis tool. It is aimed at designers who are looking for an
easily accessible, universal, and vendor-independent synthesis tool, as well as scientists who do research in
electronic design automation (EDA) and are looking for an open synthesis framework that can be used to
test algorithms on complex real-world designs.

Yosys can synthesize a large subset of Verilog 2005 and has been tested with a wide range of real-world
designs, including the OpenRISC 1200 CPU, the openMSP430 CPU, the OpenCores I2C master, and the
k68 CPU.

As of this writing a Yosys VHDL frontend is in development.

Yosys is written in C++ (using some features from the new C++11 standard). This chapter describes some
of the fundamental Yosys data structures. For the sake of simplicity the C++ type names used in the Yosys
implementation are used in this chapter, even though the chapter only explains the conceptual idea behind
it and can be used as reference to implement a similar system in any language.

4.1 Simplified data flow

Figure 4.1 shows the simplified data flow within Yosys. Rectangles in the figure represent program modules
and ellipses internal data structures that are used to exchange design data between the program modules.

Design data is read in using one of the frontend modules. The high-level HDL frontends for Verilog and
VHDL code generate an abstract syntax tree (AST) that is then passed to the AST frontend. Note that
both HDL frontends use the same AST representation that is powerful enough to cover the Verilog HDL and
VHDL language.

The AST Frontend then compiles the AST to Yosys’s main internal data format, the RTL Intermediate
Language (RTLIL). A more detailed description of this format is given in the next section.

There is also a text representation of the RTLIL data structure that can be parsed using the RTLIL Frontend.

The design data may then be transformed using a series of passes that all operate on the RTLIL representation
of the design.

Finally the design in RTLIL representation is converted back to text by one of the backends, namely the
Verilog Backend for generating Verilog netlists and the RTLIL Backend for writing the RTLIL data in the
same format that is understood by the RTLIL Frontend.

With the exception of the AST Frontend, which is called by the high-level HDL frontends and can’t be
called directly by the user, all program modules are called by the user (usually using a synthesis script that
contains text commands for Yosys).

By combining passes in different ways and/or adding additional passes to Yosys it is possible to adapt Yosys
to a wide range of applications. For this to be possible it is key that (1) all passes operate on the same data

23

https://github.com/openrisc/or1200
http://opencores.org/projects/openmsp430
http://opencores.org/projects/i2c
http://opencores.org/projects/k68

YosysHQ Yosys

structure (RTLIL) and (2) that this data structure is powerful enough to represent the design in different
stages of the synthesis.

Verilog Frontend VHDL Frontend RTLIL Frontend

AST

AST Frontend

RTLIL Passes

Verilog Backend RTLIL Backend Other Backends

Fig. 4.1: Yosys simplified data flow (ellipses: data structures, rectangles: program modules)

4.2 The RTL Intermediate Language (RTLIL)

All frontends, passes and backends in Yosys operate on a design in RTLIL representation. The only exception
are the high-level frontends that use the AST representation as an intermediate step before generating RTLIL
data.

In order to avoid reinventing names for the RTLIL classes, they are simply referred to by their full C++
name, i.e. including the RTLIL:: namespace prefix, in this document.

Figure 4.2 shows a simplified Entity-Relationship Diagram (ER Diagram) of RTLIL. In 1 : 𝑁 relationships
the arrow points from the 𝑁 side to the 1. For example one RTLIL::Design contains 𝑁 (zero to many)
instances of RTLIL::Module. A two-pointed arrow indicates a 1 : 1 relationship.

The RTLIL::Design is the root object of the RTLIL data structure. There is always one “current design” in
memory which passes operate on, frontends add data to and backends convert to exportable formats. But in
some cases passes internally generate additional RTLIL::Design objects. For example when a pass is reading
an auxiliary Verilog file such as a cell library, it might create an additional RTLIL::Design object and call
the Verilog frontend with this other object to parse the cell library.

There is only one active RTLIL::Design object that is used by all frontends, passes and backends called
by the user, e.g. using a synthesis script. The RTLIL::Design then contains zero to many RTLIL::Module
objects. This corresponds to modules in Verilog or entities in VHDL. Each module in turn contains objects
from three different categories:

24 Chapter 4. Implementation overview

YosysHQ Yosys

RTLIL::Design RTLIL::Module
1 N

RTLIL::Process

RTLIL::Memory

RTLIL::Wire

RTLIL::Cell

RTLIL::CaseRule

RTLIL::SyncRule

RTLIL::SwitchRule

Fig. 4.2: Simplified RTLIL Entity-Relationship Diagram

• RTLIL::Cell and RTLIL::Wire objects represent classical netlist data.

• RTLIL::Process objects represent the decision trees (if-then-else statements, etc.) and synchronization
declarations (clock signals and sensitivity) from Verilog always and VHDL process blocks.

• RTLIL::Memory objects represent addressable memories (arrays).

Usually the output of the synthesis procedure is a netlist, i.e. all RTLIL::Process and RTLIL::Memory
objects must be replaced by RTLIL::Cell and RTLIL::Wire objects by synthesis passes.

All features of the HDL that cannot be mapped directly to these RTLIL classes must be transformed to
an RTLIL-compatible representation by the HDL frontend. This includes Verilog-features such as generate-
blocks, loops and parameters.

The following sections contain a more detailed description of the different parts of RTLIL and rationale
behind some of the design decisions.

4.2.1 RTLIL identifiers

All identifiers in RTLIL (such as module names, port names, signal names, cell types, etc.) follow the
following naming convention: they must either start with a backslash () or a dollar sign ($).

Identifiers starting with a backslash are public visible identifiers. Usually they originate from one of the
HDL input files. For example the signal name “\sig42” is most likely a signal that was declared using the
name “sig42” in an HDL input file. On the other hand the signal name “$sig42” is an auto-generated signal
name. The backends convert all identifiers that start with a dollar sign to identifiers that do not collide with
identifiers that start with a backslash.

This has three advantages:

• First, it is impossible that an auto-generated identifier collides with an identifier that was provided by
the user.

• Second, the information about which identifiers were originally provided by the user is always available
which can help guide some optimizations. For example the “opt_rmunused” tries to preserve signals
with a user-provided name but doesn’t hesitate to delete signals that have auto-generated names when
they just duplicate other signals.

4.2. The RTL Intermediate Language (RTLIL) 25

YosysHQ Yosys

• Third, the delicate job of finding suitable auto-generated public visible names is deferred to one central
location. Internally auto-generated names that may hold important information for Yosys developers
can be used without disturbing external tools. For example the Verilog backend assigns names in the
form _integer_.

Whitespace and control characters (any character with an ASCII code 32 or less) are not allowed in RTLIL
identifiers; most frontends and backends cannot support these characters in identifiers.

In order to avoid programming errors, the RTLIL data structures check if all identifiers start with either a
backslash or a dollar sign, and contain no whitespace or control characters. Violating these rules results in
a runtime error.

All RTLIL identifiers are case sensitive.

Some transformations, such as flattening, may have to change identifiers provided by the user to avoid name
collisions. When that happens, attribute “hdlname” is attached to the object with the changed identifier.
This attribute contains one name (if emitted directly by the frontend, or is a result of disambiguation) or
multiple names separated by spaces (if a result of flattening). All names specified in the “hdlname” attribute
are public and do not include the leading “".

4.2.2 RTLIL::Design and RTLIL::Module

The RTLIL::Design object is basically just a container for RTLIL::Module objects. In addition to a list of
RTLIL::Module objects the RTLIL::Design also keeps a list of selected objects, i.e. the objects that passes
should operate on. In most cases the whole design is selected and therefore passes operate on the whole
design. But this mechanism can be useful for more complex synthesis jobs in which only parts of the design
should be affected by certain passes.

Besides the objects shown in the ER diagram in Fig. 4.2 an RTLIL::Module object contains the following
additional properties:

• The module name

• A list of attributes

• A list of connections between wires

• An optional frontend callback used to derive parametrized variations of the module

The attributes can be Verilog attributes imported by the Verilog frontend or attributes assigned by passes.
They can be used to store additional metadata about modules or just mark them to be used by certain part
of the synthesis script but not by others.

Verilog and VHDL both support parametric modules (known as “generic entities” in VHDL). The RTLIL
format does not support parametric modules itself. Instead each module contains a callback function into
the AST frontend to generate a parametrized variation of the RTLIL::Module as needed. This callback then
returns the auto-generated name of the parametrized variation of the module. (A hash over the parameters
and the module name is used to prohibit the same parametrized variation from being generated twice. For
modules with only a few parameters, a name directly containing all parameters is generated instead of a
hash string.)

26 Chapter 4. Implementation overview

YosysHQ Yosys

4.2.3 RTLIL::Cell and RTLIL::Wire

A module contains zero to many RTLIL::Cell and RTLIL::Wire objects. Objects of these types are used
to model netlists. Usually the goal of all synthesis efforts is to convert all modules to a state where the
functionality of the module is implemented only by cells from a given cell library and wires to connect these
cells with each other. Note that module ports are just wires with a special property.

An RTLIL::Wire object has the following properties:

• The wire name

• A list of attributes

• A width (buses are just wires with a width > 1)

• Bus direction (MSB to LSB or vice versa)

• Lowest valid bit index (LSB or MSB depending on bus direction)

• If the wire is a port: port number and direction (input/output/inout)

As with modules, the attributes can be Verilog attributes imported by the Verilog frontend or attributes
assigned by passes.

In Yosys, busses (signal vectors) are represented using a single wire object with a width > 1. So Yosys
does not convert signal vectors to individual signals. This makes some aspects of RTLIL more complex but
enables Yosys to be used for coarse grain synthesis where the cells of the target architecture operate on entire
signal vectors instead of single bit wires.

In Verilog and VHDL, busses may have arbitrary bounds, and LSB can have either the lowest or the highest
bit index. In RTLIL, bit 0 always corresponds to LSB; however, information from the HDL frontend is
preserved so that the bus will be correctly indexed in error messages, backend output, constraint files, etc.

An RTLIL::Cell object has the following properties:

• The cell name and type

• A list of attributes

• A list of parameters (for parametric cells)

• Cell ports and the connections of ports to wires and constants

The connections of ports to wires are coded by assigning an RTLIL::SigSpec to each cell port. The
RTLIL::SigSpec data type is described in the next section.

4.2.4 RTLIL::SigSpec

A “signal” is everything that can be applied to a cell port. I.e.

• Any constant value of arbitrary bit-width
1em For example: 1337, 16'b0000010100111001, 1'b1, 1'bx

• All bits of a wire or a selection of bits from a wire
1em For example: mywire, mywire[24], mywire[15:8]

• Concatenations of the above
1em For example: {16'd1337, mywire[15:8]}

The RTLIL::SigSpec data type is used to represent signals. The RTLIL::Cell object contains one
RTLIL::SigSpec for each cell port.

4.2. The RTL Intermediate Language (RTLIL) 27

YosysHQ Yosys

In addition, connections between wires are represented using a pair of RTLIL::SigSpec objects. Such pairs
are needed in different locations. Therefore the type name RTLIL::SigSig was defined for such a pair.

4.2.5 RTLIL::Process

When a high-level HDL frontend processes behavioural code it splits it up into data path logic (e.g. the
expression a + b is replaced by the output of an adder that takes a and b as inputs) and an RTLIL::Process
that models the control logic of the behavioural code. Let’s consider a simple example:

1 module ff_with_en_and_async_reset(clock, reset, enable, d, q);
2 input clock, reset, enable, d;
3 output reg q;
4 always @(posedge clock, posedge reset)
5 if (reset)
6 q <= 0;
7 else if (enable)
8 q <= d;
9 endmodule

In this example there is no data path and therefore the RTLIL::Module generated by the frontend only
contains a few RTLIL::Wire objects and an RTLIL::Process. The RTLIL::Process in RTLIL syntax:

1 process $proc$ff_with_en_and_async_reset.v:4$1
2 assign $0\q[0:0] \q
3 switch \reset
4 case 1'1
5 assign $0\q[0:0] 1'0
6 case
7 switch \enable
8 case 1'1
9 assign $0\q[0:0] \d

10 case
11 end
12 end
13 sync posedge \clock
14 update \q $0\q[0:0]
15 sync posedge \reset
16 update \q $0\q[0:0]
17 end

This RTLIL::Process contains two RTLIL::SyncRule objects, two RTLIL::SwitchRule objects and five
RTLIL::CaseRule objects. The wire $0q[0:0] is an automatically created wire that holds the next value
of \q. The lines 2 . . . 12 describe how $0q[0:0] should be calculated. The lines 13 . . . 16 describe how the
value of $0q[0:0] is used to update \q.

An RTLIL::Process is a container for zero or more RTLIL::SyncRule objects and exactly one RTLIL::CaseRule
object, which is called the root case.

An RTLIL::SyncRule object contains an (optional) synchronization condition (signal and edge-type), zero or
more assignments (RTLIL::SigSig), and zero or more memory writes (RTLIL::MemWriteAction). The always
synchronization condition is used to break combinatorial loops when a latch should be inferred instead.

An RTLIL::CaseRule is a container for zero or more assignments (RTLIL::SigSig) and zero or more
RTLIL::SwitchRule objects. An RTLIL::SwitchRule objects is a container for zero or more RTLIL::CaseRule
objects.

28 Chapter 4. Implementation overview

YosysHQ Yosys

In the above example the lines 2 . . . 12 are the root case. Here $0q[0:0] is first assigned the old value \q as
default value (line 2). The root case also contains an RTLIL::SwitchRule object (lines 3 . . . 12). Such an
object is very similar to the C switch statement as it uses a control signal (\reset in this case) to determine
which of its cases should be active. The RTLIL::SwitchRule object then contains one RTLIL::CaseRule
object per case. In this example there is a case1 for \reset == 1 that causes $0q[0:0] to be set (lines 4 and
5) and a default case that in turn contains a switch that sets $0q[0:0] to the value of \d if \enable is active
(lines 6 . . . 11).

A case can specify zero or more compare values that will determine whether it matches. Each of the compare
values must be the exact same width as the control signal. When more than one compare value is specified,
the case matches if any of them matches the control signal; when zero compare values are specified, the case
always matches (i.e. it is the default case).

A switch prioritizes cases from first to last: multiple cases can match, but only the first matched case becomes
active. This normally synthesizes to a priority encoder. The parallel_case attribute allows passes to assume
that no more than one case will match, and full_case attribute allows passes to assume that exactly one case
will match; if these invariants are ever dynamically violated, the behavior is undefined. These attributes
are useful when an invariant invisible to the synthesizer causes the control signal to never take certain bit
patterns.

The lines 13 . . . 16 then cause \q to be updated whenever there is a positive clock edge on \clock or \reset.

In order to generate such a representation, the language frontend must be able to handle blocking and
nonblocking assignments correctly. However, the language frontend does not need to identify the correct
type of storage element for the output signal or generate multiplexers for the decision tree. This is done by
passes that work on the RTLIL representation. Therefore it is relatively easy to substitute these steps with
other algorithms that target different target architectures or perform optimizations or other transformations
on the decision trees before further processing them.

One of the first actions performed on a design in RTLIL representation in most synthesis scripts is identifying
asynchronous resets. This is usually done using the proc_arst pass. This pass transforms the above example
to the following RTLIL::Process:

1 process $proc$ff_with_en_and_async_reset.v:4$1
2 assign $0\q[0:0] \q
3 switch \enable
4 case 1'1
5 assign $0\q[0:0] \d
6 case
7 end
8 sync posedge \clock
9 update \q $0\q[0:0]

10 sync high \reset
11 update \q 1'0
12 end

This pass has transformed the outer RTLIL::SwitchRule into a modified RTLIL::SyncRule object for the
\reset signal. Further processing converts the RTLIL::Process into e.g. a d-type flip-flop with asynchronous
reset and a multiplexer for the enable signal:

1 cell $adff $procdff$6
2 parameter \ARST_POLARITY 1'1
3 parameter \ARST_VALUE 1'0
4 parameter \CLK_POLARITY 1'1

(continues on next page)

1 The syntax 1’1 in the RTLIL code specifies a constant with a length of one bit (the first “1”), and this bit is a one (the
second “1”).

4.2. The RTL Intermediate Language (RTLIL) 29

YosysHQ Yosys

(continued from previous page)

5 parameter \WIDTH 1
6 connect \ARST \reset
7 connect \CLK \clock
8 connect \D $0\q[0:0]
9 connect \Q \q

10 end
11 cell $mux $procmux$3
12 parameter \WIDTH 1
13 connect \A \q
14 connect \B \d
15 connect \S \enable
16 connect \Y $0\q[0:0]
17 end

Different combinations of passes may yield different results. Note that $adff and $mux are internal cell types
that still need to be mapped to cell types from the target cell library.

Some passes refuse to operate on modules that still contain RTLIL::Process objects as the presence of these
objects in a module increases the complexity. Therefore the passes to translate processes to a netlist of
cells are usually called early in a synthesis script. The proc pass calls a series of other passes that together
perform this conversion in a way that is suitable for most synthesis tasks.

4.2.6 RTLIL::Memory

For every array (memory) in the HDL code an RTLIL::Memory object is created. A memory object has the
following properties:

• The memory name

• A list of attributes

• The width of an addressable word

• The size of the memory in number of words

All read accesses to the memory are transformed to $memrd cells and all write accesses to $memwr cells by
the language frontend. These cells consist of independent read- and write-ports to the memory. Memory
initialization is transformed to $meminit cells by the language frontend. The \MEMID parameter on these
cells is used to link them together and to the RTLIL::Memory object they belong to.

The rationale behind using separate cells for the individual ports versus creating a large multiport memory
cell right in the language frontend is that the separate $memrd and $memwr cells can be consolidated
using resource sharing. As resource sharing is a non-trivial optimization problem where different synthesis
tasks can have different requirements it lends itself to do the optimisation in separate passes and merge the
RTLIL::Memory objects and $memrd and $memwr cells to multiport memory blocks after resource sharing
is completed.

The memory pass performs this conversion and can (depending on the options passed to it) transform the
memories directly to d-type flip-flops and address logic or yield multiport memory blocks (represented using
$mem cells).

See Sec. 5.1.5 for details about the memory cell types.

30 Chapter 4. Implementation overview

YosysHQ Yosys

4.3 Command interface and synthesis scripts

Yosys reads and processes commands from synthesis scripts, command line arguments and an interactive
command prompt. Yosys commands consist of a command name and an optional whitespace separated list
of arguments. Commands are terminated using the newline character or a semicolon (;). Empty lines and
lines starting with the hash sign (#) are ignored. See Sec. 3.3 for an example synthesis script.

The command help can be used to access the command reference manual.

Most commands can operate not only on the entire design but also specifically on selected parts of the design.
For example the command dump will print all selected objects in the current design while dump foobar will
only print the module foobar and dump * will print the entire design regardless of the current selection.

dump */t:$add %x:+[A] */w:* %i

The selection mechanism is very powerful. For example the command above will print all wires that are
connected to the \A port of a $add cell. Detailed documentation of the select framework can be found in
the command reference for the select command.

4.4 Source tree and build system

The Yosys source tree is organized into the following top-level directories:

• backends/
This directory contains a subdirectory for each of the backend modules.

• frontends/
This directory contains a subdirectory for each of the frontend modules.

• kernel/
This directory contains all the core functionality of Yosys. This includes the functions and definitions
for working with the RTLIL data structures (rtlil.h and rtlil.cc), the main() function (driver.cc), the
internal framework for generating log messages (log.h and log.cc), the internal framework for
registering and calling passes (register.h and register.cc), some core commands that are not really
passes (select.cc, show.cc, . . .) and a couple of other small utility libraries.

• passes/
This directory contains a subdirectory for each pass or group of passes. For example as of this
writing the directory passes/opt/ contains the code for seven passes: opt, opt_expr, opt_muxtree,
opt_reduce, opt_rmdff, opt_rmunused and opt_merge.

• techlibs/
This directory contains simulation models and standard implementations for the cells from the
internal cell library.

• tests/
This directory contains a couple of test cases. Most of the smaller tests are executed automatically
when make test is called. The larger tests must be executed manually. Most of the larger tests
require downloading external HDL source code and/or external tools. The tests range from
comparing simulation results of the synthesized design to the original sources to logic equivalence
checking of entire CPU cores.

The top-level Makefile includes frontends/*/Makefile.inc, passes/*/Makefile.inc and back-
ends/*/Makefile.inc. So when extending Yosys it is enough to create a new directory in frontends/,

4.3. Command interface and synthesis scripts 31

YosysHQ Yosys

passes/ or backends/ with your sources and a Makefile.inc. The Yosys kernel automatically detects all
commands linked with Yosys. So it is not needed to add additional commands to a central list of commands.

Good starting points for reading example source code to learn how to write passes are
passes/opt/opt_rmdff.cc and passes/opt/opt_merge.cc.

See the top-level README file for a quick Getting Started guide and build instructions. The Yosys build is
based solely on Makefiles.

Users of the Qt Creator IDE can generate a QT Creator project file using make qtcreator. Users of the
Eclipse IDE can use the “Makefile Project with Existing Code” project type in the Eclipse “New Project”
dialog (only available after the CDT plugin has been installed) to create an Eclipse project in order to
programming extensions to Yosys or just browse the Yosys code base.

32 Chapter 4. Implementation overview

CHAPTER

FIVE

INTERNAL CELL LIBRARY

Most of the passes in Yosys operate on netlists, i.e. they only care about the RTLIL::Wire and RTLIL::Cell
objects in an RTLIL::Module. This chapter discusses the cell types used by Yosys to represent a behavioural
design internally.

This chapter is split in two parts. In the first part the internal RTL cells are covered. These cells are used to
represent the design on a coarse grain level. Like in the original HDL code on this level the cells operate on
vectors of signals and complex cells like adders exist. In the second part the internal gate cells are covered.
These cells are used to represent the design on a fine-grain gate-level. All cells from this category operate
on single bit signals.

5.1 RTL cells

Most of the RTL cells closely resemble the operators available in HDLs such as Verilog or VHDL. Therefore
Verilog operators are used in the following sections to define the behaviour of the RTL cells.

Note that all RTL cells have parameters indicating the size of inputs and outputs. When passes modify RTL
cells they must always keep the values of these parameters in sync with the size of the signals connected to
the inputs and outputs.

Simulation models for the RTL cells can be found in the file techlibs/common/simlib.v in the Yosys source
tree.

5.1.1 Unary operators

All unary RTL cells have one input port \A and one output port \Y. They also have the following parameters:

\A_SIGNED
Set to a non-zero value if the input \A is signed and therefore should be sign-extended when needed.

\A_WIDTH
The width of the input port \A.

\Y_WIDTH
The width of the output port \Y.

Table 5.1 lists all cells for unary RTL operators.

33

YosysHQ Yosys

Table 5.1: Cell types for unary operators with their corresponding
Verilog expressions.

Verilog Cell Type
Y = ~A $not
Y = +A $pos
Y = -A $neg
Y = &A $reduce_and
Y = |A $reduce_or
Y = ^A $reduce_xor
Y = ~^A $reduce_xnor
Y = |A $reduce_bool
Y = !A $logic_not

For the unary cells that output a logical value ($reduce_and, $reduce_or, $reduce_xor, $reduce_xnor,
$reduce_bool, $logic_not), when the \Y_WIDTH parameter is greater than 1, the output is zero-extended,
and only the least significant bit varies.

Note that $reduce_or and $reduce_bool actually represent the same logic function. But the HDL frontends
generate them in different situations. A $reduce_or cell is generated when the prefix | operator is being
used. A $reduce_bool cell is generated when a bit vector is used as a condition in an if-statement or
?:-expression.

5.1.2 Binary operators

All binary RTL cells have two input ports \A and \B and one output port \Y. They also have the following
parameters:

\A_SIGNED
Set to a non-zero value if the input \A is signed and therefore should be sign-extended when needed.

\A_WIDTH
The width of the input port \A.

\B_SIGNED
Set to a non-zero value if the input \B is signed and therefore should be sign-extended when needed.

\B_WIDTH
The width of the input port \B.

\Y_WIDTH
The width of the output port \Y.

Table 5.2 lists all cells for binary RTL operators.

34 Chapter 5. Internal cell library

YosysHQ Yosys

Table 5.2: Cell types for binary operators with their corresponding
Verilog expressions.

Verilog Cell Type Verilog Cell Type
Y = A & B $and Y = A < B $lt
Y = A | B $or Y = A <= B $le
Y = A ^ B $xor Y = A == B $eq
Y = A ~^ B $xnor Y = A != B $ne
Y = A << B $shl Y = A >= B $ge
Y = A >> B $shr Y = A > B $gt
Y = A <<< B $sshl Y = A + B $add
Y = A >>> B $sshr Y = A - B $sub
Y = A && B $logic_and Y = A * B $mul
Y = A || B $logic_or Y = A / B $div
Y = A === B $eqx Y = A % B $mod
Y = A !== B $nex N/A $divfloor
Y = A ** B $pow N/A $modfoor

The $shl and $shr cells implement logical shifts, whereas the $sshl and $sshr cells implement arithmetic
shifts. The $shl and $sshl cells implement the same operation. All four of these cells interpret the second
operand as unsigned, and require \B_SIGNED to be zero.

Two additional shift operator cells are available that do not directly correspond to any operator in Verilog,
$shift and $shiftx. The $shift cell performs a right logical shift if the second operand is positive (or
unsigned), and a left logical shift if it is negative. The $shiftx cell performs the same operation as the
$shift cell, but the vacated bit positions are filled with undef (x) bits, and corresponds to the Verilog
indexed part-select expression.

For the binary cells that output a logical value ($logic_and, $logic_or, $eqx, $nex, $lt, $le, $eq, $ne,
$ge, $gt), when the \Y_WIDTH parameter is greater than 1, the output is zero-extended, and only the least
significant bit varies.

Division and modulo cells are available in two rounding modes. The original $div and $mod cells are based
on truncating division, and correspond to the semantics of the verilog / and % operators. The $divfloor
and $modfloor cells represent flooring division and flooring modulo, the latter of which is also known as
“remainder” in several languages. See Table 5.3 for a side-by-side comparison between the different semantics.

Table 5.3: Comparison between different rounding modes for divi-
sion and modulo cells.

Division Result Truncating Flooring
$div $mod $divfloor $modfloor

-10 / 3 -3.3 -3 -1 -4 2
10 / -3 -3.3 -3 1 -4 -2
-10 / -3 3.3 3 -1 3 -1
10 / 3 3.3 3 1 3 1

5.1. RTL cells 35

YosysHQ Yosys

5.1.3 Multiplexers

Multiplexers are generated by the Verilog HDL frontend for ?:-expressions. Multiplexers are also generated
by the proc pass to map the decision trees from RTLIL::Process objects to logic.

The simplest multiplexer cell type is $mux. Cells of this type have a \WITDH parameter and data inputs \A
and \B and a data output \Y, all of the specified width. This cell also has a single bit control input \S. If
\S is 0 the value from the input \A is sent to the output, if it is 1 the value from the \B input is sent to the
output. So the $mux cell implements the function Y = S ? B : A.

The $pmux cell is used to multiplex between many inputs using a one-hot select signal. Cells of this type have
a \WIDTH and a \S_WIDTH parameter and inputs \A, \B, and \S and an output \Y. The \S input is \S_WIDTH
bits wide. The \A input and the output are both \WIDTH bits wide and the \B input is \WIDTH*\S_WIDTH
bits wide. When all bits of \S are zero, the value from \A input is sent to the output. If the 𝑛‘th bit from
\S is set, the value 𝑛‘th \WIDTH bits wide slice of the \B input is sent to the output. When more than one
bit from \S is set the output is undefined. Cells of this type are used to model “parallel cases” (defined by
using the parallel_case attribute or detected by an optimization).

The $tribuf cell is used to implement tristate logic. Cells of this type have a \B parameter and inputs \A
and \EN and an output \Y. The \A input and \Y output are \WIDTH bits wide, and the \EN input is one bit
wide. When \EN is 0, the output is not driven. When \EN is 1, the value from \A input is sent to the \Y
output. Therefore, the $tribuf cell implements the function Y = EN ? A : 'bz.

Behavioural code with cascaded if-then-else- and case-statements usually results in trees of multiplexer cells.
Many passes (from various optimizations to FSM extraction) heavily depend on these multiplexer trees to
understand dependencies between signals. Therefore optimizations should not break these multiplexer trees
(e.g. by replacing a multiplexer between a calculated signal and a constant zero with an $and gate).

5.1.4 Registers

SR-type latches are represented by $sr cells. These cells have input ports \SET and \CLR and an output
port \Q. They have the following parameters:

\WIDTH
The width of inputs \SET and \CLR and output \Q.

\SET_POLARITY
The set input bits are active-high if this parameter has the value 1'b1 and active-low if this parameter
is 1'b0.

\CLR_POLARITY
The reset input bits are active-high if this parameter has the value 1'b1 and active-low if this parameter
is 1'b0.

Both set and reset inputs have separate bits for every output bit. When both the set and reset inputs of an
$sr cell are active for a given bit index, the reset input takes precedence.

D-type flip-flops are represented by $dff cells. These cells have a clock port \CLK, an input port \D and an
output port \Q. The following parameters are available for $dff cells:

\WIDTH
The width of input \D and output \Q.

\CLK_POLARITY
Clock is active on the positive edge if this parameter has the value 1'b1 and on the negative edge if
this parameter is 1'b0.

36 Chapter 5. Internal cell library

YosysHQ Yosys

D-type flip-flops with asynchronous reset are represented by $adff cells. As the $dff cells they have \CLK,
\D and \Q ports. In addition they also have a single-bit \ARST input port for the reset pin and the following
additional two parameters:

\ARST_POLARITY
The asynchronous reset is active-high if this parameter has the value 1'b1 and active-low if this
parameter is 1'b0.

\ARST_VALUE
The state of \Q will be set to this value when the reset is active.

Usually these cells are generated by the proc pass using the information in the designs RTLIL::Process
objects.

D-type flip-flops with synchronous reset are represented by $sdff cells. As the $dff cells they have \CLK,
\D and \Q ports. In addition they also have a single-bit \SRST input port for the reset pin and the following
additional two parameters:

\SRST_POLARITY
The synchronous reset is active-high if this parameter has the value 1'b1 and active-low if this param-
eter is 1'b0.

\SRST_VALUE
The state of \Q will be set to this value when the reset is active.

Note that the $adff and $sdff cells can only be used when the reset value is constant.

D-type flip-flops with asynchronous load are represented by $aldff cells. As the $dff cells they have \CLK,
\D and \Q ports. In addition they also have a single-bit \ALOAD input port for the async load enable pin, a
\AD input port with the same width as data for the async load data, and the following additional parameter:

\ALOAD_POLARITY
The asynchronous load is active-high if this parameter has the value 1'b1 and active-low if this pa-
rameter is 1'b0.

D-type flip-flops with asynchronous set and reset are represented by $dffsr cells. As the $dff cells they have
\CLK, \D and \Q ports. In addition they also have multi-bit \SET and \CLR input ports and the corresponding
polarity parameters, like $sr cells.

D-type flip-flops with enable are represented by $dffe, $adffe, $aldffe, $dffsre, $sdffe, and $sdffce
cells, which are enhanced variants of $dff, $adff, $aldff, $dffsr, $sdff (with reset over enable) and $sdff
(with enable over reset) cells, respectively. They have the same ports and parameters as their base cell. In
addition they also have a single-bit \EN input port for the enable pin and the following parameter:

\EN_POLARITY
The enable input is active-high if this parameter has the value 1'b1 and active-low if this parameter
is 1'b0.

D-type latches are represented by $dlatch cells. These cells have an enable port \EN, an input port \D, and
an output port \Q. The following parameters are available for $dlatch cells:

\WIDTH
The width of input \D and output \Q.

\EN_POLARITY
The enable input is active-high if this parameter has the value 1'b1 and active-low if this parameter
is 1'b0.

The latch is transparent when the \EN input is active.

D-type latches with reset are represented by $adlatch cells. In addition to $dlatch ports and parameters,
they also have a single-bit \ARST input port for the reset pin and the following additional parameters:

5.1. RTL cells 37

YosysHQ Yosys

\ARST_POLARITY
The asynchronous reset is active-high if this parameter has the value 1'b1 and active-low if this
parameter is 1'b0.

\ARST_VALUE
The state of \Q will be set to this value when the reset is active.

D-type latches with set and reset are represented by $dlatchsr cells. In addition to $dlatch ports and
parameters, they also have multi-bit \SET and \CLR input ports and the corresponding polarity parameters,
like $sr cells.

5.1.5 Memories

Memories are either represented using RTLIL::Memory objects, $memrd_v2, $memwr_v2, and $meminit_v2
cells, or by $mem_v2 cells alone.

In the first alternative the RTLIL::Memory objects hold the general metadata for the memory (bit width,
size in number of words, etc.) and for each port a $memrd_v2 (read port) or $memwr_v2 (write port) cell is
created. Having individual cells for read and write ports has the advantage that they can be consolidated
using resource sharing passes. In some cases this drastically reduces the number of required ports on the
memory cell. In this alternative, memory initialization data is represented by $meminit_v2 cells, which allow
delaying constant folding for initialization addresses and data until after the frontend finishes.

The $memrd_v2 cells have a clock input \CLK, an enable input \EN, an address input \ADDR, a data output \
DATA, an asynchronous reset input \ARST, and a synchronous reset input \SRST. They also have the following
parameters:

\MEMID
The name of the RTLIL::Memory object that is associated with this read port.

\ABITS
The number of address bits (width of the \ADDR input port).

\WIDTH
The number of data bits (width of the \DATA output port). Note that this may be a power-of-two
multiple of the underlying memory’s width – such ports are called wide ports and access an aligned
group of cells at once. In this case, the corresponding low bits of \ADDR must be tied to 0.

\CLK_ENABLE
When this parameter is non-zero, the clock is used. Otherwise this read port is asynchronous and the
\CLK input is not used.

\CLK_POLARITY
Clock is active on the positive edge if this parameter has the value 1'b1 and on the negative edge if
this parameter is 1'b0.

\TRANSPARENCY_MASK
This parameter is a bitmask of write ports that this read port is transparent with. The bits of this
parameter are indexed by the write port’s \PORTID parameter. Transparency can only be enabled
between synchronous ports sharing a clock domain. When transparency is enabled for a given port
pair, a read and write to the same address in the same cycle will return the new value. Otherwise the
old value is returned.

\COLLISION_X_MASK
This parameter is a bitmask of write ports that have undefined collision behavior with this port. The
bits of this parameter are indexed by the write port’s \PORTID parameter. This behavior can only be
enabled between synchronous ports sharing a clock domain. When undefined collision is enabled for
a given port pair, a read and write to the same address in the same cycle will return the undefined
(all-X) value.This option is exclusive (for a given port pair) with the transparency option.

38 Chapter 5. Internal cell library

YosysHQ Yosys

\ARST_VALUE
Whenever the \ARST input is asserted, the data output will be reset to this value. Only used for
synchronous ports.

\SRST_VALUE
Whenever the \SRST input is synchronously asserted, the data output will be reset to this value. Only
used for synchronous ports.

\INIT_VALUE
The initial value of the data output, for synchronous ports.

\CE_OVER_SRST
If this parameter is non-zero, the \SRST input is only recognized when \EN is true. Otherwise, \SRST
is recognized regardless of \EN.

The $memwr_v2 cells have a clock input \CLK, an enable input \EN (one enable bit for each data bit), an
address input \ADDR and a data input \DATA. They also have the following parameters:

\MEMID
The name of the RTLIL::Memory object that is associated with this write port.

\ABITS
The number of address bits (width of the \ADDR input port).

\WIDTH
The number of data bits (width of the \DATA output port). Like with $memrd_v2 cells, the width
is allowed to be any power-of-two multiple of memory width, with the corresponding restriction on
address.

\CLK_ENABLE
When this parameter is non-zero, the clock is used. Otherwise this write port is asynchronous and the
\CLK input is not used.

\CLK_POLARITY
Clock is active on positive edge if this parameter has the value 1'b1 and on the negative edge if this
parameter is 1'b0.

\PORTID
An identifier for this write port, used to index write port bit mask parameters.

\PRIORITY_MASK
This parameter is a bitmask of write ports that this write port has priority over in case of writing to
the same address. The bits of this parameter are indexed by the other write port’s \PORTID parameter.
Write ports can only have priority over write ports with lower port ID. When two ports write to the
same address and neither has priority over the other, the result is undefined. Priority can only be set
between two synchronous ports sharing the same clock domain.

The $meminit_v2 cells have an address input \ADDR, a data input \DATA, with the width of the \DATA port
equal to \WIDTH parameter times \WORDS parameter, and a bit enable mask input \EN with width equal to
\WIDTH parameter. All three of the inputs must resolve to a constant for synthesis to succeed.

\MEMID
The name of the RTLIL::Memory object that is associated with this initialization cell.

\ABITS
The number of address bits (width of the \ADDR input port).

\WIDTH
The number of data bits per memory location.

\WORDS
The number of consecutive memory locations initialized by this cell.

5.1. RTL cells 39

YosysHQ Yosys

\PRIORITY
The cell with the higher integer value in this parameter wins an initialization conflict.

The HDL frontend models a memory using RTLIL::Memory objects and asynchronous $memrd_v2 and
$memwr_v2 cells. The memory pass (i.e.~its various sub-passes) migrates $dff cells into the $memrd_v2
and $memwr_v2 cells making them synchronous, then converts them to a single $mem_v2 cell and (optionally)
maps this cell type to $dff cells for the individual words and multiplexer-based address decoders for the
read and write interfaces. When the last step is disabled or not possible, a $mem_v2 cell is left in the design.

The $mem_v2 cell provides the following parameters:

\MEMID
The name of the original RTLIL::Memory object that became this $mem_v2 cell.

\SIZE
The number of words in the memory.

\ABITS
The number of address bits.

\WIDTH
The number of data bits per word.

\INIT
The initial memory contents.

\RD_PORTS
The number of read ports on this memory cell.

\RD_WIDE_CONTINUATION
This parameter is \RD_PORTS bits wide, containing a bitmask of “wide continuation” read ports. Such
ports are used to represent the extra data bits of wide ports in the combined cell, and must have
all control signals identical with the preceding port, except for address, which must have the proper
sub-cell address encoded in the low bits.

\RD_CLK_ENABLE
This parameter is \RD_PORTS bits wide, containing a clock enable bit for each read port.

\RD_CLK_POLARITY
This parameter is \RD_PORTS bits wide, containing a clock polarity bit for each read port.

\RD_TRANSPARENCY_MASK
This parameter is \RD_PORTS*\WR_PORTS bits wide, containing a concatenation of all \
TRANSPARENCY_MASK values of the original $memrd_v2 cells.

\RD_COLLISION_X_MASK
This parameter is \RD_PORTS*\WR_PORTS bits wide, containing a concatenation of all \
COLLISION_X_MASK values of the original $memrd_v2 cells.

\RD_CE_OVER_SRST
This parameter is \RD_PORTS bits wide, determining relative synchronous reset and enable priority for
each read port.

\RD_INIT_VALUE
This parameter is \RD_PORTS*\WIDTH bits wide, containing the initial value for each synchronous read
port.

\RD_ARST_VALUE
This parameter is \RD_PORTS*\WIDTH bits wide, containing the asynchronous reset value for each
synchronous read port.

40 Chapter 5. Internal cell library

YosysHQ Yosys

\RD_SRST_VALUE
This parameter is \RD_PORTS*\WIDTH bits wide, containing the synchronous reset value for each syn-
chronous read port.

\WR_PORTS
The number of write ports on this memory cell.

\WR_WIDE_CONTINUATION
This parameter is \WR_PORTS bits wide, containing a bitmask of “wide continuation” write ports.

\WR_CLK_ENABLE
This parameter is \WR_PORTS bits wide, containing a clock enable bit for each write port.

\WR_CLK_POLARITY
This parameter is \WR_PORTS bits wide, containing a clock polarity bit for each write port.

\WR_PRIORITY_MASK
This parameter is \WR_PORTS*\WR_PORTS bits wide, containing a concatenation of all \PRIORITY_MASK
values of the original $memwr_v2 cells.

The $mem_v2 cell has the following ports:

\RD_CLK
This input is \RD_PORTS bits wide, containing all clock signals for the read ports.

\RD_EN
This input is \RD_PORTS bits wide, containing all enable signals for the read ports.

\RD_ADDR
This input is \RD_PORTS*\ABITS bits wide, containing all address signals for the read ports.

\RD_DATA
This output is \RD_PORTS*\WIDTH bits wide, containing all data signals for the read ports.

\RD_ARST
This input is \RD_PORTS bits wide, containing all asynchronous reset signals for the read ports.

\RD_SRST
This input is \RD_PORTS bits wide, containing all synchronous reset signals for the read ports.

\WR_CLK
This input is \WR_PORTS bits wide, containing all clock signals for the write ports.

\WR_EN
This input is \WR_PORTS*\WIDTH bits wide, containing all enable signals for the write ports.

\WR_ADDR
This input is \WR_PORTS*\ABITS bits wide, containing all address signals for the write ports.

\WR_DATA
This input is \WR_PORTS*\WIDTH bits wide, containing all data signals for the write ports.

The memory_collect pass can be used to convert discrete $memrd_v2, $memwr_v2, and $meminit_v2 cells
belonging to the same memory to a single $mem_v2 cell, whereas the memory_unpack pass performs the
inverse operation. The memory_dff pass can combine asynchronous memory ports that are fed by or feeding
registers into synchronous memory ports. The memory_bram pass can be used to recognize $mem_v2 cells
that can be implemented with a block RAM resource on an FPGA. The memory_map pass can be used to
implement $mem_v2 cells as basic logic: word-wide DFFs and address decoders.

5.1. RTL cells 41

YosysHQ Yosys

5.1.6 Finite state machines

Add a brief description of the $fsm cell type.

5.1.7 Specify rules

Add information about $specify2, $specify3, and $specrule cells.

5.1.8 Formal verification cells

Add information about $assert, $assume, $live, $fair, $cover, $equiv, $initstate, $anyconst,
$anyseq, $anyinit, $allconst, $allseq cells.

Add information about $ff and $_FF_ cells.

5.1.9 Debugging cells

The $print cell is used to log the values of signals, akin to (and translatable to) the $display and $write
family of tasks in Verilog. It has the following parameters:

\FORMAT
The internal format string. The syntax is described below.

\ARGS_WIDTH
The width (in bits) of the signal on the \ARGS port.

\TRG_ENABLE
True if triggered on specific signals defined in \TRG; false if triggered whenever \ARGS or \EN change
and \EN is 1.

If \TRG_ENABLE is true, the following parameters also apply:

\TRG_WIDTH
The number of bits in the \TRG port.

\TRG_POLARITY
For each bit in \TRG, 1 if that signal is positive-edge triggered, 0 if negative-edge triggered.

\PRIORITY
When multiple $print cells fire on the same trigger, they execute in descending priority order.

Ports:

\TRG
The signals that control when this $print cell is triggered. If the width of this port is zero and
\TRG_ENABLE is true, the cell is triggered during initial evaluation (time zero) only.

\EN
Enable signal for the whole cell.

\ARGS
The values to be displayed, in format string order.

42 Chapter 5. Internal cell library

YosysHQ Yosys

Format string syntax

The format string syntax resembles Python f-strings. Regular text is passed through unchanged until a
format specifier is reached, starting with a {.

Format specifiers have the following syntax. Unless noted, all items are required:

{
Denotes the start of the format specifier.

size
Signal size in bits; this many bits are consumed from the \ARGS port by this specifier.

:
Separates the size from the remaining items.

justify
> for right-justified, < for left-justified.

padding
0 for zero-padding, or a space for space-padding.

width?
(optional) The number of characters wide to pad to.

base

• b for base-2 integers (binary)

• o for base-8 integers (octal)

• d for base-10 integers (decimal)

• h for base-16 integers (hexadecimal)

• c for ASCII characters/strings

• t and r for simulation time (corresponding to $time and $realtime)

For integers, this item may follow:

+?
(optional, decimals only) Include a leading plus for non-negative numbers. This can assist with sym-
metry with negatives in tabulated output.

signedness
u for unsigned, s for signed. This distinction is only respected when rendering decimals.

ASCII characters/strings have no special options, but the signal size must be divisible by 8.

For simulation time, the signal size must be zero.

Finally:

}
Denotes the end of the format specifier.

Some example format specifiers:

• {8:>02hu} - 8-bit unsigned integer rendered as hexadecimal, right-justified, zero-padded to 2 characters
wide.

• {32:< 15d+s} - 32-bit signed integer rendered as decimal, left-justified, space-padded to 15 characters
wide, positive values prefixed with +.

5.1. RTL cells 43

YosysHQ Yosys

• {16:< 10hu} - 16-bit unsigned integer rendered as hexadecimal, left-justified, space-padded to 10
characters wide.

• {0:>010t} - simulation time, right-justified, zero-padded to 10 characters wide.

To include literal { and } characters in your format string, use {{ and }} respectively.

It is an error for a format string to consume more or less bits from \ARGS than the port width.

Values are never truncated, regardless of the specified width.

Note that further restrictions on allowable combinations of options may apply depending on the backend
used.

For example, Verilog does not have a format specifier that allows zero-padding a string (i.e. more than 1
ASCII character), though zero-padding a single character is permitted.

Thus, while the RTLIL format specifier {8:>02c} translates to %02c, {16:>02c} cannot be represented in
Verilog and will fail to emit. In this case, {16:> 02c} must be used, which translates to %2s.

5.2 Gates

For gate level logic networks, fixed function single bit cells are used that do not provide any parameters.

Simulation models for these cells can be found in the file techlibs/common/simcells.v in the Yosys source
tree.

Table 5.4: Cell types for gate level logic networks (main list)

Verilog Cell Type
Y = A $_BUF_
Y = ~A $_NOT_
Y = A & B $_AND_
Y = ~(A & B) $_NAND_
Y = A & ~B $_ANDNOT_
Y = A | B $_OR_
Y = ~(A | B) $_NOR_
Y = A | ~B $_ORNOT_
Y = A ^ B $_XOR_
Y = ~(A ^ B) $_XNOR_
Y = ~((A & B) | C) $_AOI3_
Y = ~((A | B) & C) $_OAI3_
Y = ~((A & B) | (C & D)) $_AOI4_
Y = ~((A | B) & (C | D)) $_OAI4_
Y = S ? B : A $_MUX_
Y = ~(S ? B : A) $_NMUX_
(see below) $_MUX4_
(see below) $_MUX8_
(see below) $_MUX16_
Y = EN ? A : 1'bz $_TBUF_
always @(negedge C) Q <= D $_DFF_N_
always @(posedge C) Q <= D $_DFF_P_
always @* if (!E) Q <= D $_DLATCH_N_
always @* if (E) Q <= D $_DLATCH_P_

44 Chapter 5. Internal cell library

YosysHQ Yosys

Table 5.5: Cell types for gate level logic networks (FFs with reset)

𝐶𝑙𝑘𝐸𝑑𝑔𝑒 𝑅𝑠𝑡𝐿𝑣𝑙 𝑅𝑠𝑡𝑉 𝑎𝑙 Cell Type
negedge 0 0 $_DFF_NN0_, $_SDFF_NN0_
negedge 0 1 $_DFF_NN1_, $_SDFF_NN1_
negedge 1 0 $_DFF_NP0_, $_SDFF_NP0_
negedge 1 1 $_DFF_NP1_, $_SDFF_NP1_
posedge 0 0 $_DFF_PN0_, $_SDFF_PN0_
posedge 0 1 $_DFF_PN1_, $_SDFF_PN1_
posedge 1 0 $_DFF_PP0_, $_SDFF_PP0_
posedge 1 1 $_DFF_PP1_, $_SDFF_PP1_

Table 5.6: Cell types for gate level logic networks (FFs with enable)

𝐶𝑙𝑘𝐸𝑑𝑔𝑒 𝐸𝑛𝐿𝑣𝑙 Cell Type
negedge 0 $_DFFE_NN_
negedge 1 $_DFFE_NP_
posedge 0 $_DFFE_PN_
posedge 1 $_DFFE_PP_

Table 5.7: Cell types for gate level logic networks (FFs with reset
and enable)

𝐶𝑙𝑘𝐸𝑑𝑔𝑒 𝑅𝑠𝑡𝐿𝑣𝑙 𝑅𝑠𝑡𝑉 𝑎𝑙 𝐸𝑛𝐿𝑣𝑙 Cell Type
negedge 0 0 0 $_DFFE_NN0N_, $_SDFFE_NN0N_, $_SDFFCE_NN0N_
negedge 0 0 1 $_DFFE_NN0P_, $_SDFFE_NN0P_, $_SDFFCE_NN0P_
negedge 0 1 0 $_DFFE_NN1N_, $_SDFFE_NN1N_, $_SDFFCE_NN1N_
negedge 0 1 1 $_DFFE_NN1P_, $_SDFFE_NN1P_, $_SDFFCE_NN1P_
negedge 1 0 0 $_DFFE_NP0N_, $_SDFFE_NP0N_, $_SDFFCE_NP0N_
negedge 1 0 1 $_DFFE_NP0P_, $_SDFFE_NP0P_, $_SDFFCE_NP0P_
negedge 1 1 0 $_DFFE_NP1N_, $_SDFFE_NP1N_, $_SDFFCE_NP1N_
negedge 1 1 1 $_DFFE_NP1P_, $_SDFFE_NP1P_, $_SDFFCE_NP1P_
posedge 0 0 0 $_DFFE_PN0N_, $_SDFFE_PN0N_, $_SDFFCE_PN0N_
posedge 0 0 1 $_DFFE_PN0P_, $_SDFFE_PN0P_, $_SDFFCE_PN0P_
posedge 0 1 0 $_DFFE_PN1N_, $_SDFFE_PN1N_, $_SDFFCE_PN1N_
posedge 0 1 1 $_DFFE_PN1P_, $_SDFFE_PN1P_, $_SDFFCE_PN1P_
posedge 1 0 0 $_DFFE_PP0N_, $_SDFFE_PP0N_, $_SDFFCE_PP0N_
posedge 1 0 1 $_DFFE_PP0P_, $_SDFFE_PP0P_, $_SDFFCE_PP0P_
posedge 1 1 0 $_DFFE_PP1N_, $_SDFFE_PP1N_, $_SDFFCE_PP1N_
posedge 1 1 1 $_DFFE_PP1P_, $_SDFFE_PP1P_, $_SDFFCE_PP1P_

5.2. Gates 45

YosysHQ Yosys

Table 5.8: Cell types for gate level logic networks (FFs with set
and reset)

𝐶𝑙𝑘𝐸𝑑𝑔𝑒 𝑆𝑒𝑡𝐿𝑣𝑙 𝑅𝑠𝑡𝐿𝑣𝑙 Cell Type
negedge 0 0 $_DFFSR_NNN_
negedge 0 1 $_DFFSR_NNP_
negedge 1 0 $_DFFSR_NPN_
negedge 1 1 $_DFFSR_NPP_
posedge 0 0 $_DFFSR_PNN_
posedge 0 1 $_DFFSR_PNP_
posedge 1 0 $_DFFSR_PPN_
posedge 1 1 $_DFFSR_PPP_

Table 5.9: Cell types for gate level logic networks (FFs with set
and reset and enable)

𝐶𝑙𝑘𝐸𝑑𝑔𝑒 𝑆𝑒𝑡𝐿𝑣𝑙 𝑅𝑠𝑡𝐿𝑣𝑙 𝐸𝑛𝐿𝑣𝑙 Cell Type
negedge 0 0 0 $_DFFSRE_NNNN_
negedge 0 0 1 $_DFFSRE_NNNP_
negedge 0 1 0 $_DFFSRE_NNPN_
negedge 0 1 1 $_DFFSRE_NNPP_
negedge 1 0 0 $_DFFSRE_NPNN_
negedge 1 0 1 $_DFFSRE_NPNP_
negedge 1 1 0 $_DFFSRE_NPPN_
negedge 1 1 1 $_DFFSRE_NPPP_
posedge 0 0 0 $_DFFSRE_PNNN_
posedge 0 0 1 $_DFFSRE_PNNP_
posedge 0 1 0 $_DFFSRE_PNPN_
posedge 0 1 1 $_DFFSRE_PNPP_
posedge 1 0 0 $_DFFSRE_PPNN_
posedge 1 0 1 $_DFFSRE_PPNP_
posedge 1 1 0 $_DFFSRE_PPPN_
posedge 1 1 1 $_DFFSRE_PPPP_

Table 5.10: Cell types for gate level logic networks (latches with
reset)

𝐸𝑛𝐿𝑣𝑙 𝑅𝑠𝑡𝐿𝑣𝑙 𝑅𝑠𝑡𝑉 𝑎𝑙 Cell Type
0 0 0 $_DLATCH_NN0_
0 0 1 $_DLATCH_NN1_
0 1 0 $_DLATCH_NP0_
0 1 1 $_DLATCH_NP1_
1 0 0 $_DLATCH_PN0_
1 0 1 $_DLATCH_PN1_
1 1 0 $_DLATCH_PP0_
1 1 1 $_DLATCH_PP1_

46 Chapter 5. Internal cell library

YosysHQ Yosys

Table 5.11: Cell types for gate level logic networks (latches with
set and reset)

𝐸𝑛𝐿𝑣𝑙 𝑆𝑒𝑡𝐿𝑣𝑙 𝑅𝑠𝑡𝐿𝑣𝑙 Cell Type
0 0 0 $_DLATCHSR_NNN_
0 0 1 $_DLATCHSR_NNP_
0 1 0 $_DLATCHSR_NPN_
0 1 1 $_DLATCHSR_NPP_
1 0 0 $_DLATCHSR_PNN_
1 0 1 $_DLATCHSR_PNP_
1 1 0 $_DLATCHSR_PPN_
1 1 1 $_DLATCHSR_PPP_

Table 5.12: Cell types for gate level logic networks (SR latches)

𝑆𝑒𝑡𝐿𝑣𝑙 𝑅𝑠𝑡𝐿𝑣𝑙 Cell Type
0 0 $_SR_NN_
0 1 $_SR_NP_
1 0 $_SR_PN_
1 1 $_SR_PP_

Tables 5.4, 5.6, 5.5, 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12 list all cell types used for gate level logic. The
cell types $_BUF_, $_NOT_, $_AND_, $_NAND_, $_ANDNOT_, $_OR_, $_NOR_, $_ORNOT_, $_XOR_, $_XNOR_,
$_AOI3_, $_OAI3_, $_AOI4_, $_OAI4_, $_MUX_, $_MUX4_, $_MUX8_, $_MUX16_ and $_NMUX_ are used to
model combinatorial logic. The cell type $_TBUF_ is used to model tristate logic.

The $_MUX4_, $_MUX8_ and $_MUX16_ cells are used to model wide muxes, and correspond to the following
Verilog code:

// $_MUX4_
assign Y = T ? (S ? D : C) :

(S ? B : A);
// $_MUX8_
assign Y = U ? T ? (S ? H : G) :

(S ? F : E) :
T ? (S ? D : C) :

(S ? B : A);
// $_MUX16_
assign Y = V ? U ? T ? (S ? P : O) :

(S ? N : M) :
T ? (S ? L : K) :

(S ? J : I) :
U ? T ? (S ? H : G) :

(S ? F : E) :
T ? (S ? D : C) :

(S ? B : A);

The cell types $_DFF_N_ and $_DFF_P_ represent d-type flip-flops.

The cell types $_DFFE_[NP][NP]_ implement d-type flip-flops with enable. The values in the table for these
cell types relate to the following Verilog code template.

5.2. Gates 47

YosysHQ Yosys

always @(CLK_EDGE C)
if (EN == EN_LVL)

Q <= D;

The cell types $_DFF_[NP][NP][01]_ implement d-type flip-flops with asynchronous reset. The values in
the table for these cell types relate to the following Verilog code template, where RST_EDGE is posedge if
RST_LVL if 1, and negedge otherwise.

always @(CLK_EDGE C, RST_EDGE R)
if (R == RST_LVL)

Q <= RST_VAL;
else

Q <= D;

The cell types $_SDFF_[NP][NP][01]_ implement d-type flip-flops with synchronous reset. The values in
the table for these cell types relate to the following Verilog code template:

always @(CLK_EDGE C)
if (R == RST_LVL)

Q <= RST_VAL;
else

Q <= D;

The cell types $_DFFE_[NP][NP][01][NP]_ implement d-type flip-flops with asynchronous reset and enable.
The values in the table for these cell types relate to the following Verilog code template, where RST_EDGE is
posedge if RST_LVL if 1, and negedge otherwise.

always @(CLK_EDGE C, RST_EDGE R)
if (R == RST_LVL)

Q <= RST_VAL;
else if (EN == EN_LVL)

Q <= D;

The cell types $_SDFFE_[NP][NP][01][NP]_ implement d-type flip-flops with synchronous reset and enable,
with reset having priority over enable. The values in the table for these cell types relate to the following
Verilog code template:

always @(CLK_EDGE C)
if (R == RST_LVL)

Q <= RST_VAL;
else if (EN == EN_LVL)

Q <= D;

The cell types $_SDFFCE_[NP][NP][01][NP]_ implement d-type flip-flops with synchronous reset and enable,
with enable having priority over reset. The values in the table for these cell types relate to the following
Verilog code template:

always @(CLK_EDGE C)
if (EN == EN_LVL)

if (R == RST_LVL)
Q <= RST_VAL;

else
Q <= D;

48 Chapter 5. Internal cell library

YosysHQ Yosys

The cell types $_DFFSR_[NP][NP][NP]_ implement d-type flip-flops with asynchronous set and reset. The
values in the table for these cell types relate to the following Verilog code template, where RST_EDGE is
posedge if RST_LVL if 1, negedge otherwise, and SET_EDGE is posedge if SET_LVL if 1, negedge otherwise.

always @(CLK_EDGE C, RST_EDGE R, SET_EDGE S)
if (R == RST_LVL)

Q <= 0;
else if (S == SET_LVL)

Q <= 1;
else

Q <= D;

The cell types $_DFFSRE_[NP][NP][NP][NP]_ implement d-type flip-flops with asynchronous set and reset
and enable. The values in the table for these cell types relate to the following Verilog code template, where
RST_EDGE is posedge if RST_LVL if 1, negedge otherwise, and SET_EDGE is posedge if SET_LVL if 1, negedge
otherwise.

always @(CLK_EDGE C, RST_EDGE R, SET_EDGE S)
if (R == RST_LVL)

Q <= 0;
else if (S == SET_LVL)

Q <= 1;
else if (E == EN_LVL)

Q <= D;

The cell types $_DLATCH_N_ and $_DLATCH_P_ represent d-type latches.

The cell types $_DLATCH_[NP][NP][01]_ implement d-type latches with reset. The values in the table for
these cell types relate to the following Verilog code template:

always @*
if (R == RST_LVL)

Q <= RST_VAL;
else if (E == EN_LVL)

Q <= D;

The cell types $_DLATCHSR_[NP][NP][NP]_ implement d-type latches with set and reset. The values in the
table for these cell types relate to the following Verilog code template:

always @*
if (R == RST_LVL)

Q <= 0;
else if (S == SET_LVL)

Q <= 1;
else if (E == EN_LVL)

Q <= D;

The cell types $_SR_[NP][NP]_ implement sr-type latches. The values in the table for these cell types relate
to the following Verilog code template:

always @*
if (R == RST_LVL)

Q <= 0;
else if (S == SET_LVL)

Q <= 1;

5.2. Gates 49

YosysHQ Yosys

In most cases gate level logic networks are created from RTL networks using the techmap pass. The flip-flop
cells from the gate level logic network can be mapped to physical flip-flop cells from a Liberty file using the
dfflibmap pass. The combinatorial logic cells can be mapped to physical cells from a Liberty file via ABC
using the abc pass.

Add information about $slice and $concat cells.

Add information about $lut and $sop cells.

Add information about $alu, $macc, $fa, and $lcu cells.

50 Chapter 5. Internal cell library

CHAPTER

SIX

PROGRAMMING YOSYS EXTENSIONS

This chapter contains some bits and pieces of information about programming yosys extensions. Also consult
the section on programming in the “Yosys Presentation” (can be downloaded from the Yosys website as PDF)
and don’t be afraid to ask questions on the YosysHQ Slack.

6.1 Guidelines

The guidelines directory contains notes on various aspects of Yosys development. The files GettingStarted
and CodingStyle may be of particular interest, and are reproduced here.

Listing 6.1: guidelines/GettingStarted

Getting Started
===============

Outline of a Yosys command

Here is a the C++ code for a "hello_world" Yosys command (hello.cc):

#include "kernel/yosys.h"

USING_YOSYS_NAMESPACE
PRIVATE_NAMESPACE_BEGIN

struct HelloWorldPass : public Pass {
HelloWorldPass() : Pass("hello_world") { }
void execute(vector<string>, Design*) override {

log("Hello World!\n");
}

} HelloWorldPass;

PRIVATE_NAMESPACE_END

This can be built into a Yosys module using the following command:

yosys-config --exec --cxx --cxxflags --ldflags -o hello.so -shared hello.cc --
→˓ldlibs

(continues on next page)

51

YosysHQ Yosys

(continued from previous page)

Or short:

yosys-config --build hello.so hello.cc

And then executed using the following command:

yosys -m hello.so -p hello_world

Yosys Data Structures

Here is a short list of data structures that you should make yourself familiar
with before you write C++ code for Yosys. The following data structures are all
defined when "kernel/yosys.h" is included and USING_YOSYS_NAMESPACE is used.

1. Yosys Container Classes

Yosys uses dict<K, T> and pool<T> as main container classes. dict<K, T> is
essentially a replacement for std::unordered_map<K, T> and pool<T> is a
replacement for std::unordered_set<T>. The main characteristics are:

- dict<K, T> and pool<T> are about 2x faster than the std containers

- references to elements in a dict<K, T> or pool<T> are invalidated by
insert and remove operations (similar to std::vector<T> on push_back()).

- some iterators are invalidated by erase(). specifically, iterators
that have not passed the erased element yet are invalidated. (erase()
itself returns valid iterator to the next element.)

- no iterators are invalidated by insert(). elements are inserted at
begin(). i.e. only a new iterator that starts at begin() will see the
inserted elements.

- the method .count(key, iterator) is like .count(key) but only
considers elements that can be reached via the iterator.

- iterators can be compared. it1 < it2 means that the position of t2
can be reached via t1 but not vice versa.

- the method .sort() can be used to sort the elements in the container
the container stays sorted until elements are added or removed.

- dict<K, T> and pool<T> will have the same order of iteration across
all compilers, standard libraries and architectures.

In addition to dict<K, T> and pool<T> there is also an idict<K> that
creates a bijective map from K to the integers. For example:

idict<string, 42> si;
log("%d\n", si("hello")); // will print 42

(continues on next page)

52 Chapter 6. Programming Yosys extensions

YosysHQ Yosys

(continued from previous page)

log("%d\n", si("world")); // will print 43
log("%d\n", si.at("world")); // will print 43
log("%d\n", si.at("dummy")); // will throw exception
log("%s\n", si[42].c_str())); // will print hello
log("%s\n", si[43].c_str())); // will print world
log("%s\n", si[44].c_str())); // will throw exception

It is not possible to remove elements from an idict.

Finally mfp<K> implements a merge-find set data structure (aka. disjoint-set or
union-find) over the type K ("mfp" = merge-find-promote).

2. Standard STL data types

In Yosys we use std::vector<T> and std::string whenever applicable. When
dict<K, T> and pool<T> are not suitable then std::map<K, T> and std::set<T>
are used instead.

The types std::vector<T> and std::string are also available as vector<T>
and string in the Yosys namespace.

3. RTLIL objects

The current design (essentially a collection of modules, each defined by a
netlist) is stored in memory using RTLIL object (declared in kernel/rtlil.h,
automatically included by kernel/yosys.h). You should glance over at least
the declarations for the following types in kernel/rtlil.h:

RTLIL::IdString
This is a handle for an identifier (e.g. cell or wire name).
It feels a lot like a std::string, but is only a single int
in size. (The actual string is stored in a global lookup
table.)

RTLIL::SigBit
A single signal bit. I.e. either a constant state (0, 1,
x, z) or a single bit from a wire.

RTLIL::SigSpec
Essentially a vector of SigBits.

RTLIL::Wire
RTLIL::Cell

The building blocks of the netlist in a module.

RTLIL::Module
RTLIL::Design

The module is a container with connected cells and wires
in it. The design is a container with modules in it.

All this types are also available without the RTLIL:: prefix in the Yosys
namespace.

(continues on next page)

6.1. Guidelines 53

YosysHQ Yosys

(continued from previous page)

4. SigMap and other Helper Classes

There are a couple of additional helper classes that are in wide use
in Yosys. Most importantly there is SigMap (declared in kernel/sigtools.h).

When a design has many wires in it that are connected to each other, then a
single signal bit can have multiple valid names. The SigMap object can be used
to map SigSpecs or SigBits to unique SigSpecs and SigBits that consistently
only use one wire from such a group of connected wires. For example:

SigBit a = module->addWire(NEW_ID);
SigBit b = module->addWire(NEW_ID);
module->connect(a, b);

log("%d\n", a == b); // will print 0

SigMap sigmap(module);
log("%d\n", sigmap(a) == sigmap(b)); // will print 1

Using the RTLIL Netlist Format

In the RTLIL netlist format the cell ports contain SigSpecs that point to the
Wires. There are no references in the other direction. This has two direct
consequences:

(1) It is very easy to go from cells to wires but hard to go in the other way.

(2) There is no danger in removing cells from the netlists, but removing wires
can break the netlist format when there are still references to the wire
somewhere in the netlist.

The solution to (1) is easy: Create custom indexes that allow you to make fast
lookups for the wire-to-cell direction. You can either use existing generic
index structures to do that (such as the ModIndex class) or write your own
index. For many application it is simplest to construct a custom index. For
example:

SigMap sigmap(module);
dict<SigBit, Cell*> sigbit_to_driver_index;

for (auto cell : module->cells())
for (auto &conn : cell->connections())

if (cell->output(conn.first))
for (auto bit : sigmap(conn.second))

sigbit_to_driver_index[bit] = cell;

Regarding (2): There is a general theme in Yosys that you don't remove wires
from the design. You can rename them, unconnect them, but you do not actually remove
the Wire object from the module. Instead you let the "clean" command take care

(continues on next page)

54 Chapter 6. Programming Yosys extensions

YosysHQ Yosys

(continued from previous page)

of the dangling wires. On the other hand it is safe to remove cells (as long as
you make sure this does not invalidate a custom index you are using in your code).

Example Code

The following yosys commands are a good starting point if you are looking for examples
of how to use the Yosys API:

docs/source/CHAPTER_Prog/stubnets.cc
manual/PRESENTATION_Prog/my_cmd.cc

Script Passes

The ScriptPass base class can be used to implement passes that just call other passes,
like a script. Examples for such passes are:

techlibs/common/prep.cc
techlibs/common/synth.cc

In some cases it is easier to implement such a pass as regular pass, for example when
ScriptPass doesn't provide the type of flow control desired. (But many of the
script passes in Yosys that don't use ScriptPass simply predate the ScriptPass base
class.) Examples for such passes are:

passes/opt/opt.cc
passes/proc/proc.cc

Whether they use the ScriptPass base-class or not, a pass should always either
call other passes without doing any non-trivial work itself, or should implement
a non-trivial algorithm but not call any other passes. The reason for this is that
this helps containing complexity in individual passes and simplifies debugging the
entire system.

Exceptions to this rule should be rare and limited to cases where calling other
passes is optional and only happens when requested by the user (such as for
example `techmap -autoproc`), or where it is about commands that are "top-level
commands" in their own right, not components to be used in regular synthesis
flows (such as the `bugpoint` command).

A pass that would "naturally" call other passes and also do some work itself
should be re-written in one of two ways:

1) It could be re-written as script pass with the parts that are not calls
to other passes factored out into individual new passes. Usually in those
cases the new sub passes share the same prefix as the top-level script pass.

2) It could be re-written so that it already expects the design in a certain
state, expecting the calling script to set up this state before calling the

(continues on next page)

6.1. Guidelines 55

YosysHQ Yosys

(continued from previous page)

pass in questions.

Many back-ends are examples for the 2nd approach. For example, `write_aiger`
does not convert the design into AIG representation, but expects the design
to be already in this form, and prints an `Unsupported cell type` error
message otherwise.

Notes on the existing codebase

For historical reasons not all parts of Yosys adhere to the current coding
style. When adding code to existing parts of the system, adhere to this guide
for the new code instead of trying to mimic the style of the surrounding code.

Listing 6.2: guidelines/CodingStyle

Coding Style
============

Formatting of code

- Yosys code is using tabs for indentation. Tabs are 8 characters.

- A continuation of a statement in the following line is indented by
two additional tabs.

- Lines are as long as you want them to be. A good rule of thumb is
to break lines at about column 150.

- Opening braces can be put on the same or next line as the statement
opening the block (if, switch, for, while, do). Put the opening brace
on its own line for larger blocks, especially blocks that contains
blank lines.

- Otherwise stick to the Linux Kernel Coding Style:
https://www.kernel.org/doc/Documentation/CodingStyle

C++ Language

Yosys is written in C++11.

In general Yosys uses "int" instead of "size_t". To avoid compiler
warnings for implicit type casts, always use "GetSize(foobar)" instead
of "foobar.size()". (GetSize() is defined in kernel/yosys.h)

Use range-based for loops whenever applicable.

56 Chapter 6. Programming Yosys extensions

YosysHQ Yosys

6.2 The “stubsnets” example module

The following is the complete code of the “stubsnets” example module. It is included in the Yosys source
distribution as docs/source/CHAPTER_Prog/stubnets.cc.

Listing 6.3: docs/source/CHAPTER_Prog/stubnets.cc

1 // This is free and unencumbered software released into the public domain.
2 //
3 // Anyone is free to copy, modify, publish, use, compile, sell, or
4 // distribute this software, either in source code form or as a compiled
5 // binary, for any purpose, commercial or non-commercial, and by any
6 // means.
7

8 #include "kernel/yosys.h"
9 #include "kernel/sigtools.h"

10

11 #include <string>
12 #include <map>
13 #include <set>
14

15 USING_YOSYS_NAMESPACE
16 PRIVATE_NAMESPACE_BEGIN
17

18 // this function is called for each module in the design
19 static void find_stub_nets(RTLIL::Design *design, RTLIL::Module *module, bool report_

→˓bits)
20 {
21 // use a SigMap to convert nets to a unique representation
22 SigMap sigmap(module);
23

24 // count how many times a single-bit signal is used
25 std::map<RTLIL::SigBit, int> bit_usage_count;
26

27 // count output lines for this module (needed only for summary output at the end)
28 int line_count = 0;
29

30 log("Looking for stub wires in module %s:\n", RTLIL::id2cstr(module->name));
31

32 // For all ports on all cells
33 for (auto &cell_iter : module->cells_)
34 for (auto &conn : cell_iter.second->connections())
35 {
36 // Get the signals on the port
37 // (use sigmap to get a uniqe signal name)
38 RTLIL::SigSpec sig = sigmap(conn.second);
39

40 // add each bit to bit_usage_count, unless it is a constant
41 for (auto &bit : sig)
42 if (bit.wire != NULL)
43 bit_usage_count[bit]++;
44 }
45

(continues on next page)

6.2. The “stubsnets” example module 57

YosysHQ Yosys

(continued from previous page)

46 // for each wire in the module
47 for (auto &wire_iter : module->wires_)
48 {
49 RTLIL::Wire *wire = wire_iter.second;
50

51 // .. but only selected wires
52 if (!design->selected(module, wire))
53 continue;
54

55 // add +1 usage if this wire actually is a port
56 int usage_offset = wire->port_id > 0 ? 1 : 0;
57

58 // we will record which bits of the (possibly multi-bit) wire are stub␣
→˓signals

59 std::set<int> stub_bits;
60

61 // get a signal description for this wire and split it into separate bits
62 RTLIL::SigSpec sig = sigmap(wire);
63

64 // for each bit (unless it is a constant):
65 // check if it is used at least two times and add to stub_bits otherwise
66 for (int i = 0; i < GetSize(sig); i++)
67 if (sig[i].wire != NULL && (bit_usage_count[sig[i]] + usage_

→˓offset) < 2)
68 stub_bits.insert(i);
69

70 // continue if no stub bits found
71 if (stub_bits.size() == 0)
72 continue;
73

74 // report stub bits and/or stub wires, don't report single bits
75 // if called with report_bits set to false.
76 if (GetSize(stub_bits) == GetSize(sig)) {
77 log(" found stub wire: %s\n", RTLIL::id2cstr(wire->name));
78 } else {
79 if (!report_bits)
80 continue;
81 log(" found wire with stub bits: %s [", RTLIL::id2cstr(wire->

→˓name));
82 for (int bit : stub_bits)
83 log("%s%d", bit == *stub_bits.begin() ? "" : ", ", bit);
84 log("]\n");
85 }
86

87 // we have outputted a line, increment summary counter
88 line_count++;
89 }
90

91 // report summary
92 if (report_bits)
93 log(" found %d stub wires or wires with stub bits.\n", line_count);
94 else

(continues on next page)

58 Chapter 6. Programming Yosys extensions

YosysHQ Yosys

(continued from previous page)

95 log(" found %d stub wires.\n", line_count);
96 }
97

98 // each pass contains a singleton object that is derived from Pass
99 struct StubnetsPass : public Pass {

100 StubnetsPass() : Pass("stubnets") { }
101 void execute(std::vector<std::string> args, RTLIL::Design *design) override
102 {
103 // variables to mirror information from passed options
104 bool report_bits = 0;
105

106 log_header(design, "Executing STUBNETS pass (find stub nets).\n");
107

108 // parse options
109 size_t argidx;
110 for (argidx = 1; argidx < args.size(); argidx++) {
111 std::string arg = args[argidx];
112 if (arg == "-report_bits") {
113 report_bits = true;
114 continue;
115 }
116 break;
117 }
118

119 // handle extra options (e.g. selection)
120 extra_args(args, argidx, design);
121

122 // call find_stub_nets() for each module that is either
123 // selected as a whole or contains selected objects.
124 for (auto &it : design->modules_)
125 if (design->selected_module(it.first))
126 find_stub_nets(design, it.second, report_bits);
127 }
128 } StubnetsPass;
129

130 PRIVATE_NAMESPACE_END

Listing 6.4: docs/source/CHAPTER_Prog/Makefile

1 test: stubnets.so
2 yosys -ql test1.log -m ./stubnets.so test.v -p "stubnets"
3 yosys -ql test2.log -m ./stubnets.so test.v -p "opt; stubnets"
4 yosys -ql test3.log -m ./stubnets.so test.v -p␣

→˓"techmap; opt; stubnets -report_bits"
5 tail test1.log test2.log test3.log
6

7 stubnets.so: stubnets.cc
8 yosys-config --exec --cxx --cxxflags --ldflags -o $@ -shared $^ --ldlibs
9

10 clean:
11 rm -f test1.log test2.log test3.log
12 rm -f stubnets.so stubnets.d

6.2. The “stubsnets” example module 59

YosysHQ Yosys

Listing 6.5: docs/source/CHAPTER_Prog/test.v

1 module uut(in1, in2, in3, out1, out2);
2

3 input [8:0] in1, in2, in3;
4 output [8:0] out1, out2;
5

6 assign out1 = in1 + in2 + (in3 >> 4);
7

8 endmodule

60 Chapter 6. Programming Yosys extensions

CHAPTER

SEVEN

THE VERILOG AND AST FRONTENDS

This chapter provides an overview of the implementation of the Yosys Verilog and AST frontends. The
Verilog frontend reads Verilog-2005 code and creates an abstract syntax tree (AST) representation of the
input. This AST representation is then passed to the AST frontend that converts it to RTLIL data, as
illustrated in Fig. 7.1.

Verilog Source

Verilog Frontend

AST

AST Frontend

RTLIL

Preprocessor

Lexer

Parser

Simplifier

RTLIL Generator

Fig. 7.1: Simplified Verilog to RTLIL data flow

61

YosysHQ Yosys

7.1 Transforming Verilog to AST

The Verilog frontend converts the Verilog sources to an internal AST representation that closely resembles the
structure of the original Verilog code. The Verilog frontend consists of three components, the Preprocessor,
the Lexer and the Parser.

The source code to the Verilog frontend can be found in frontends/verilog/ in the Yosys source tree.

7.1.1 The Verilog preprocessor

The Verilog preprocessor scans over the Verilog source code and interprets some of the Verilog compiler
directives such as `include, `define and `ifdef.

It is implemented as a C++ function that is passed a file descriptor as input and returns the pre-processed
Verilog code as a std::string.

The source code to the Verilog Preprocessor can be found in frontends/verilog/preproc.cc in the Yosys source
tree.

7.1.2 The Verilog lexer

The Verilog Lexer is written using the lexer generator flex . Its source code can be found in fron-
tends/verilog/verilog_lexer.l in the Yosys source tree. The lexer does little more than identifying all keywords
and literals recognised by the Yosys Verilog frontend.

The lexer keeps track of the current location in the Verilog source code using some global variables. These
variables are used by the constructor of AST nodes to annotate each node with the source code location it
originated from.

Finally the lexer identifies and handles special comments such as “// synopsys translate_off” and “/
/ synopsys full_case”. (It is recommended to use `ifdef constructs instead of the Synsopsys trans-
late_on/off comments and attributes such as (* full_case *) over “// synopsys full_case” whenever
possible.)

7.1.3 The Verilog parser

The Verilog Parser is written using the parser generator bison . Its source code can be found in fron-
tends/verilog/verilog_parser.y in the Yosys source tree.

It generates an AST using the AST::AstNode data structure defined in frontends/ast/ast.h. An
AST::AstNode object has the following properties:

Table 7.1: AST node types with their corresponding Verilog
constructs.

AST Node Type Corresponding Verilog Construct
AST_NONE This Node type should never be used.
AST_DESIGN This node type is used for the top node of the AST

tree. It has no corresponding Verilog construct.
AST_MODULE, AST_TASK, AST_FUNCTION module, task and function
AST_WIRE input, output, wire, reg and integer
AST_MEMORY Verilog Arrays

continues on next page

62 Chapter 7. The Verilog and AST frontends

YosysHQ Yosys

Table 7.1 – continued from previous page
AST_AUTOWIRE Created by the simplifier when an undeclared signal

name is used.
AST_PARAMETER, AST_LOCALPARAM parameter and localparam
AST_PARASET Parameter set in cell instantiation
AST_ARGUMENT Port connection in cell instantiation
AST_RANGE Bit-Index in a signal or element index in array
AST_CONSTANT A literal value
AST_CELLTYPE The type of cell in cell instantiation
AST_IDENTIFIER An Identifier (signal name in expression or

cell/task/etc. name in other contexts)
AST_PREFIX Construct an identifier in the form <pre-

fix>[<index>].<suffix> (used only in advanced
generate constructs)

AST_FCALL, AST_TCALL Call to function or task
AST_TO_SIGNED, AST_TO_UNSIGNED The $signed() and $unsigned() functions
AST_CONCAT, AST_REPLICATE The {...} and {...{...}} operators
AST_BIT_NOT, AST_BIT_AND,
AST_BIT_OR, AST_BIT_XOR,
AST_BIT_XNOR

The bitwise operators ~, &, |, ^ and ~^

AST_REDUCE_AND, AST_REDUCE_OR,
AST_REDUCE_XOR, AST_REDUCE_XNOR

The unary reduction operators ~, &, |, ^ and ~^

AST_REDUCE_BOOL Conversion from multi-bit value to boolean value
(equivalent to AST_REDUCE_OR)

AST_SHIFT_LEFT, AST_SHIFT_RIGHT,
AST_SHIFT_SLEFT, AST_SHIFT_SRIGHT

The shift operators <<, >>, <<< and >>>

AST_LT, AST_LE, AST_EQ, AST_NE,
AST_GE, AST_GT

The relational operators <, <=, ==, !=, >= and >

AST_ADD, AST_SUB, AST_MUL, AST_DIV,
AST_MOD, AST_POW

The binary operators +, -, *, /, % and **

AST_POS, AST_NEG The prefix operators + and -
AST_LOGIC_AND, AST_LOGIC_OR,
AST_LOGIC_NOT

The logic operators &&, || and !

AST_TERNARY The ternary ?:-operator
AST_MEMRD AST_MEMWR Read and write memories. These nodes are gener-

ated by the AST simplifier for writes/reads to/from
Verilog arrays.

AST_ASSIGN An assign statement
AST_CELL A cell instantiation
AST_PRIMITIVE A primitive cell (and, nand, or, etc.)
AST_ALWAYS, AST_INITIAL Verilog always- and initial-blocks
AST_BLOCK A begin-end-block
AST_ASSIGN_EQ. AST_ASSIGN_LE Blocking (=) and nonblocking (<=) assignments

within an always- or initial-block
AST_CASE. AST_COND, AST_DEFAULT The case (if) statements, conditions within a case

and the default case respectively
AST_FOR A for-loop with an always- or initial-block
AST_GENVAR, AST_GENBLOCK,
AST_GENFOR, AST_GENIF

The genvar and generate keywords and for and
if within a generate block.

AST_POSEDGE, AST_NEGEDGE,
AST_EDGE

Event conditions for always blocks.

• The node type
This enum (AST::AstNodeType) specifies the role of the node. Table 7.1 contains a list of all node

7.1. Transforming Verilog to AST 63

YosysHQ Yosys

types.

• The child nodes
This is a list of pointers to all children in the abstract syntax tree.

• Attributes
As almost every AST node might have Verilog attributes assigned to it, the AST::AstNode has direct
support for attributes. Note that the attribute values are again AST nodes.

• Node content
Each node might have additional content data. A series of member variables exist to hold such data.
For example the member std::string str can hold a string value and is used e.g. in the
AST_IDENTIFIER node type to store the identifier name.

• Source code location
Each AST::AstNode is automatically annotated with the current source code location by the
AST::AstNode constructor. It is stored in the std::string filename and int linenum member
variables.

The AST::AstNode constructor can be called with up to two child nodes that are automatically added to
the list of child nodes for the new object. This simplifies the creation of AST nodes for simple expressions a
bit. For example the bison code for parsing multiplications:

1 basic_expr '*' attr basic_expr {
2 $$ = new AstNode(AST_MUL, $1, $4);
3 append_attr($$, $3);
4 } |

The generated AST data structure is then passed directly to the AST frontend that performs the actual
conversion to RTLIL.

Note that the Yosys command read_verilog provides the options -yydebug and -dump_ast that can be
used to print the parse tree or abstract syntax tree respectively.

7.2 Transforming AST to RTLIL

The AST Frontend converts a set of modules in AST representation to modules in RTLIL representation
and adds them to the current design. This is done in two steps: simplification and RTLIL generation.

The source code to the AST frontend can be found in frontends/ast/ in the Yosys source tree.

7.2.1 AST simplification

A full-featured AST is too complex to be transformed into RTLIL directly. Therefore it must first be brought
into a simpler form. This is done by calling the AST::AstNode::simplify() method of all AST_MODULE
nodes in the AST. This initiates a recursive process that performs the following transformations on the AST
data structure:

• Inline all task and function calls.

• Evaluate all generate-statements and unroll all for-loops.

• Perform const folding where it is necessary (e.g. in the value part of AST_PARAMETER,
AST_LOCALPARAM, AST_PARASET and AST_RANGE nodes).

• Replace AST_PRIMITIVE nodes with appropriate AST_ASSIGN nodes.

64 Chapter 7. The Verilog and AST frontends

YosysHQ Yosys

• Replace dynamic bit ranges in the left-hand-side of assignments with AST_CASE nodes with
AST_COND children for each possible case.

• Detect array access patterns that are too complicated for the RTLIL::Memory abstraction and replace
them with a set of signals and cases for all reads and/or writes.

• Otherwise replace array accesses with AST_MEMRD and AST_MEMWR nodes.

In addition to these transformations, the simplifier also annotates the AST with additional information that
is needed for the RTLIL generator, namely:

• All ranges (width of signals and bit selections) are not only const folded but (when a constant value is
found) are also written to member variables in the AST_RANGE node.

• All identifiers are resolved and all AST_IDENTIFIER nodes are annotated with a pointer to the
AST node that contains the declaration of the identifier. If no declaration has been found, an
AST_AUTOWIRE node is created and used for the annotation.

This produces an AST that is fairly easy to convert to the RTLIL format.

7.2.2 Generating RTLIL

After AST simplification, the AST::AstNode::genRTLIL() method of each AST_MODULE node in the
AST is called. This initiates a recursive process that generates equivalent RTLIL data for the AST data.

The AST::AstNode::genRTLIL() method returns an RTLIL::SigSpec structure. For nodes that represent
expressions (operators, constants, signals, etc.), the cells needed to implement the calculation described by
the expression are created and the resulting signal is returned. That way it is easy to generate the circuits
for large expressions using depth-first recursion. For nodes that do not represent an expression (such as
AST_CELL), the corresponding circuit is generated and an empty RTLIL::SigSpec is returned.

7.3 Synthesizing Verilog always blocks

For behavioural Verilog code (code utilizing always- and initial-blocks) it is necessary to also generate
RTLIL::Process objects. This is done in the following way:

Whenever AST::AstNode::genRTLIL() encounters an always- or initial-block, it creates an instance of
AST_INTERNAL::ProcessGenerator. This object then generates the RTLIL::Process object for the block.
It also calls AST::AstNode::genRTLIL() for all right-hand-side expressions contained within the block.

First the AST_INTERNAL::ProcessGenerator creates a list of all signals assigned within the block. It then
creates a set of temporary signals using the naming scheme $<number> \<original_name> for each of the
assigned signals.

Then an RTLIL::Process is created that assigns all intermediate values for each left-hand-side signal to the
temporary signal in its RTLIL::CaseRule/RTLIL::SwitchRule tree.

Finally a RTLIL::SyncRule is created for the RTLIL::Process that assigns the temporary signals for the
final values to the actual signals.

A process may also contain memory writes. A RTLIL::MemWriteAction is created for each of them.

Calls to AST::AstNode::genRTLIL() are generated for right hand sides as needed. When blocking as-
signments are used, AST::AstNode::genRTLIL() is configured using global variables to use the temporary
signals that hold the correct intermediate values whenever one of the previously assigned signals is used in
an expression.

7.3. Synthesizing Verilog always blocks 65

YosysHQ Yosys

Unfortunately the generation of a correct RTLIL::CaseRule/RTLIL::SwitchRule tree for behavioural code
is a non-trivial task. The AST frontend solves the problem using the approach described on the following
pages. The following example illustrates what the algorithm is supposed to do. Consider the following
Verilog code:

1 always @(posedge clock) begin
2 out1 = in1;
3 if (in2)
4 out1 = !out1;
5 out2 <= out1;
6 if (in3)
7 out2 <= out2;
8 if (in4)
9 if (in5)

10 out3 <= in6;
11 else
12 out3 <= in7;
13 out1 = out1 ^ out2;
14 end

This is translated by the Verilog and AST frontends into the following RTLIL code (attributes, cell parameters
and wire declarations not included):

1 cell $logic_not $logic_not$<input>:4$2
2 connect \A \in1
3 connect \Y $logic_not$<input>:4$2_Y
4 end
5 cell $xor xor<input>:13$3
6 connect \A $1\out1[0:0]
7 connect \B \out2
8 connect \Y xor<input>:13$3_Y
9 end

10 process $proc$<input>:1$1
11 assign $0\out3[0:0] \out3
12 assign $0\out2[0:0] $1\out1[0:0]
13 assign $0\out1[0:0] xor<input>:13$3_Y
14 switch \in2
15 case 1'1
16 assign $1\out1[0:0] $logic_not$<input>:4$2_Y
17 case
18 assign $1\out1[0:0] \in1
19 end
20 switch \in3
21 case 1'1
22 assign $0\out2[0:0] \out2
23 case
24 end
25 switch \in4
26 case 1'1
27 switch \in5
28 case 1'1
29 assign $0\out3[0:0] \in6
30 case
31 assign $0\out3[0:0] \in7

(continues on next page)

66 Chapter 7. The Verilog and AST frontends

YosysHQ Yosys

(continued from previous page)

32 end
33 case
34 end
35 sync posedge \clock
36 update \out1 $0\out1[0:0]
37 update \out2 $0\out2[0:0]
38 update \out3 $0\out3[0:0]
39 end

Note that the two operators are translated into separate cells outside the generated process. The signal
out1 is assigned using blocking assignments and therefore out1 has been replaced with a different signal in
all expressions after the initial assignment. The signal out2 is assigned using nonblocking assignments and
therefore is not substituted on the right-hand-side expressions.

The RTLIL::CaseRule/RTLIL::SwitchRule tree must be interpreted the following way:

• On each case level (the body of the process is the root case), first the actions on this level are evaluated
and then the switches within the case are evaluated. (Note that the last assignment on line 13 of the
Verilog code has been moved to the beginning of the RTLIL process to line 13 of the RTLIL listing.)

I.e. the special cases deeper in the switch hierarchy override the defaults on the upper levels. The
assignments in lines 12 and 22 of the RTLIL code serve as an example for this.

Note that in contrast to this, the order within the RTLIL::SwitchRule objects within a
RTLIL::CaseRule is preserved with respect to the original AST and Verilog code.

• The whole RTLIL::CaseRule/RTLIL::SwitchRule tree describes an asynchronous circuit. I.e. the
decision tree formed by the switches can be seen independently for each assigned signal. Whenever one
assigned signal changes, all signals that depend on the changed signals are to be updated. For example
the assignments in lines 16 and 18 in the RTLIL code in fact influence the assignment in line 12, even
though they are in the “wrong order”.

The only synchronous part of the process is in the RTLIL::SyncRule object generated at line 35 in the RTLIL
code. The sync rule is the only part of the process where the original signals are assigned. The synchronization
event from the original Verilog code has been translated into the synchronization type (posedge) and signal
(\clock) for the RTLIL::SyncRule object. In the case of this simple example the RTLIL::SyncRule object is
later simply transformed into a set of d-type flip-flops and the RTLIL::CaseRule/RTLIL::SwitchRule tree
to a decision tree using multiplexers.

In more complex examples (e.g. asynchronous resets) the part of the RTLIL::CaseRule/RTLIL::SwitchRule
tree that describes the asynchronous reset must first be transformed to the correct RTLIL::SyncRule objects.
This is done by the proc_adff pass.

7.3.1 The ProcessGenerator algorithm

The AST_INTERNAL::ProcessGenerator uses the following internal state variables:

• subst_rvalue_from and subst_rvalue_to
These two variables hold the replacement pattern that should be used by
AST::AstNode::genRTLIL() for signals with blocking assignments. After initialization of
AST_INTERNAL::ProcessGenerator these two variables are empty.

• subst_lvalue_from and subst_lvalue_to
These two variables contain the mapping from left-hand-side signals (\<name>) to the current
temporary signal for the same thing (initially $0\<name>).

7.3. Synthesizing Verilog always blocks 67

YosysHQ Yosys

• current_case
A pointer to a RTLIL::CaseRule object. Initially this is the root case of the generated
RTLIL::Process.

As the algorithm runs these variables are continuously modified as well as pushed to the stack and later
restored to their earlier values by popping from the stack.

On startup the ProcessGenerator generates a new RTLIL::Process object with an empty root case and
initializes its state variables as described above. Then the RTLIL::SyncRule objects are created using the
synchronization events from the AST_ALWAYS node and the initial values of subst_lvalue_from and
subst_lvalue_to. Then the AST for this process is evaluated recursively.

During this recursive evaluation, three different relevant types of AST nodes can be discov-
ered: AST_ASSIGN_LE (nonblocking assignments), AST_ASSIGN_EQ (blocking assignments) and
AST_CASE (if or case statement).

Handling of nonblocking assignments

When an AST_ASSIGN_LE node is discovered, the following actions are performed by the ProcessGener-
ator:

• The left-hand-side is evaluated using AST::AstNode::genRTLIL() and mapped to a temporary signal
name using subst_lvalue_from and subst_lvalue_to.

• The right-hand-side is evaluated using AST::AstNode::genRTLIL(). For this call, the values of
subst_rvalue_from and subst_rvalue_to are used to map blocking-assigned signals correctly.

• Remove all assignments to the same left-hand-side as this assignment from the current_case and all
cases within it.

• Add the new assignment to the current_case.

Handling of blocking assignments

When an AST_ASSIGN_EQ node is discovered, the following actions are performed by the ProcessGener-
ator:

• Perform all the steps that would be performed for a nonblocking assignment (see above).

• Remove the found left-hand-side (before lvalue mapping) from subst_rvalue_from and also remove
the respective bits from subst_rvalue_to.

• Append the found left-hand-side (before lvalue mapping) to subst_rvalue_from and append the found
right-hand-side to subst_rvalue_to.

Handling of cases and if-statements

When an AST_CASE node is discovered, the following actions are performed by the ProcessGenerator:

• The values of subst_rvalue_from, subst_rvalue_to, subst_lvalue_from and subst_lvalue_to are
pushed to the stack.

• A new RTLIL::SwitchRule object is generated, the selection expression is evaluated using
AST::AstNode::genRTLIL() (with the use of subst_rvalue_from and subst_rvalue_to) and added
to the RTLIL::SwitchRule object and the object is added to the current_case.

• All lvalues assigned to within the AST_CASE node using blocking assignments are collected and saved
in the local variable this_case_eq_lvalue.

68 Chapter 7. The Verilog and AST frontends

YosysHQ Yosys

• New temporary signals are generated for all signals in this_case_eq_lvalue and stored in
this_case_eq_ltemp.

• The signals in this_case_eq_lvalue are mapped using subst_rvalue_from and subst_rvalue_to
and the resulting set of signals is stored in this_case_eq_rvalue.

Then the following steps are performed for each AST_COND node within the AST_CASE node:

• Set subst_rvalue_from, subst_rvalue_to, subst_lvalue_from and subst_lvalue_to to the values
that have been pushed to the stack.

• Remove this_case_eq_lvalue from subst_lvalue_from/subst_lvalue_to.

• Append this_case_eq_lvalue to subst_lvalue_from and append this_case_eq_ltemp to
subst_lvalue_to.

• Push the value of current_case.

• Create a new RTLIL::CaseRule. Set current_case to the new object and add the new object to the
RTLIL::SwitchRule created above.

• Add an assignment from this_case_eq_rvalue to this_case_eq_ltemp to the new current_case.

• Evaluate the compare value for this case using AST::AstNode::genRTLIL() (with the use of
subst_rvalue_from and subst_rvalue_to) modify the new current_case accordingly.

• Recursion into the children of the AST_COND node.

• Restore current_case by popping the old value from the stack.

Finally the following steps are performed:

• The values of subst_rvalue_from, subst_rvalue_to, subst_lvalue_from and subst_lvalue_to are
popped from the stack.

• The signals from this_case_eq_lvalue are removed from the subst_rvalue_from/subst_rvalue_to-
pair.

• The value of this_case_eq_lvalue is appended to subst_rvalue_from and the value of
this_case_eq_ltemp is appended to subst_rvalue_to.

• Map the signals in this_case_eq_lvalue using subst_lvalue_from/subst_lvalue_to.

• Remove all assignments to signals in this_case_eq_lvalue in current_case and all cases within it.

• Add an assignment from this_case_eq_ltemp to this_case_eq_lvalue to current_case.

Further analysis of the algorithm for cases and if-statements

With respect to nonblocking assignments the algorithm is easy: later assignments invalidate earlier assign-
ments. For each signal assigned using nonblocking assignments exactly one temporary variable is generated
(with the $0-prefix) and this variable is used for all assignments of the variable.

Note how all the _eq_-variables become empty when no blocking assignments are used and many of the steps
in the algorithm can then be ignored as a result of this.

For a variable with blocking assignments the algorithm shows the following behaviour: First a new temporary
variable is created. This new temporary variable is then registered as the assignment target for all assignments
for this variable within the cases for this AST_CASE node. Then for each case the new temporary variable
is first assigned the old temporary variable. This assignment is overwritten if the variable is actually assigned
in this case and is kept as a default value otherwise.

7.3. Synthesizing Verilog always blocks 69

YosysHQ Yosys

This yields an RTLIL::CaseRule that assigns the new temporary variable in all branches. So when all cases
have been processed a final assignment is added to the containing block that assigns the new temporary vari-
able to the old one. Note how this step always overrides a previous assignment to the old temporary variable.
Other than nonblocking assignments, the old assignment could still have an effect somewhere in the design, as
there have been calls to AST::AstNode::genRTLIL() with a subst_rvalue_from/subst_rvalue_to-tuple
that contained the right-hand-side of the old assignment.

7.3.2 The proc pass

The ProcessGenerator converts a behavioural model in AST representation to a behavioural model in
RTLIL::Process representation. The actual conversion from a behavioural model to an RTL representation
is performed by the proc pass and the passes it launches:

• proc_clean and proc_rmdead
These two passes just clean up the RTLIL::Process structure. The proc_clean pass removes empty
parts (eg. empty assignments) from the process and proc_rmdead detects and removes unreachable
branches from the process’s decision trees.

• proc_arst
This pass detects processes that describe d-type flip-flops with asynchronous resets and rewrites the
process to better reflect what they are modelling: Before this pass, an asynchronous reset has two
edge-sensitive sync rules and one top-level for the reset path. After this pass the sync rule for the
reset is level-sensitive and the top-level has been removed.

• proc_mux
This pass converts the /-tree to a tree of multiplexers per written signal. After this, the structure
only contains the s that describe the output registers.

• proc_dff
This pass replaces the s to d-type flip-flops (with asynchronous resets if necessary).

• proc_dff
This pass replaces the s with $memwr cells.

• proc_clean
A final call to proc_clean removes the now empty objects.

Performing these last processing steps in passes instead of in the Verilog frontend has two important benefits:

First it improves the transparency of the process. Everything that happens in a separate pass is easier to
debug, as the RTLIL data structures can be easily investigated before and after each of the steps.

Second it improves flexibility. This scheme can easily be extended to support other types of storage-elements,
such as sr-latches or d-latches, without having to extend the actual Verilog frontend.

7.4 Synthesizing Verilog arrays

Add some information on the generation of $memrd and $memwr cells and how they are processed in the
memory pass.

70 Chapter 7. The Verilog and AST frontends

YosysHQ Yosys

7.5 Synthesizing parametric designs

Add some information on the RTLIL::Module::derive() method and how it is used to synthesize parametric
modules via the hierarchy pass.

7.5. Synthesizing parametric designs 71

YosysHQ Yosys

72 Chapter 7. The Verilog and AST frontends

CHAPTER

EIGHT

OPTIMIZATIONS

Yosys employs a number of optimizations to generate better and cleaner results. This chapter outlines these
optimizations.

8.1 Simple optimizations

The Yosys pass opt runs a number of simple optimizations. This includes removing unused signals and cells
and const folding. It is recommended to run this pass after each major step in the synthesis script. At the
time of this writing the opt pass executes the following passes that each perform a simple optimization:

• Once at the beginning of opt:

– opt_expr

– opt_merge -nomux

• Repeat until result is stable:

– opt_muxtree

– opt_reduce

– opt_merge

– opt_rmdff

– opt_clean

– opt_expr

The following section describes each of the opt_ passes.

8.1.1 The opt_expr pass

This pass performs const folding on the internal combinational cell types described in Chap. 5. This means
a cell with all constant inputs is replaced with the constant value this cell drives. In some cases this pass
can also optimize cells with some constant inputs.

73

YosysHQ Yosys

Table 8.1: Const folding rules for $_AND_ cells as used in
opt_expr.

A-Input B-Input Replacement
any 0 0
0 any 0
1 1 1
X/Z X/Z X
1 X/Z X
X/Z 1 X
any X/Z 0
X/Z any 0
𝑎 1 𝑎
1 𝑏 𝑏

Table 8.1 shows the replacement rules used for optimizing an $_AND_ gate. The first three rules implement
the obvious const folding rules. Note that ‘any’ might include dynamic values calculated by other parts of
the circuit. The following three lines propagate undef (X) states. These are the only three cases in which it
is allowed to propagate an undef according to Sec. 5.1.10 of IEEE Std. 1364-2005 [A+06].

The next two lines assume the value 0 for undef states. These two rules are only used if no other substitutions
are possible in the current module. If other substitutions are possible they are performed first, in the hope
that the ‘any’ will change to an undef value or a 1 and therefore the output can be set to undef.

The last two lines simply replace an $_AND_ gate with one constant-1 input with a buffer.

Besides this basic const folding the opt_expr pass can replace 1-bit wide $eq and $ne cells with buffers or
not-gates if one input is constant.

The opt_expr pass is very conservative regarding optimizing $mux cells, as these cells are often used to
model decision-trees and breaking these trees can interfere with other optimizations.

8.1.2 The opt_muxtree pass

This pass optimizes trees of multiplexer cells by analyzing the select inputs. Consider the following simple
example:

1 module uut(a, y); input a; output [1:0] y = a ? (a ? 1 : 2) : 3; endmodule

The output can never be 2, as this would require a to be 1 for the outer multiplexer and 0 for the inner
multiplexer. The opt_muxtree pass detects this contradiction and replaces the inner multiplexer with a
constant 1, yielding the logic for y = a ? 1 : 3.

8.1.3 The opt_reduce pass

This is a simple optimization pass that identifies and consolidates identical input bits to $reduce_and and
$reduce_or cells. It also sorts the input bits to ease identification of shareable $reduce_and and $reduce_or
cells in other passes.

This pass also identifies and consolidates identical inputs to multiplexer cells. In this case the new shared
select bit is driven using a $reduce_or cell that combines the original select bits.

Lastly this pass consolidates trees of $reduce_and cells and trees of $reduce_or cells to single large $re-
duce_and or $reduce_or cells.

74 Chapter 8. Optimizations

YosysHQ Yosys

These three simple optimizations are performed in a loop until a stable result is produced.

8.1.4 The opt_rmdff pass

This pass identifies single-bit d-type flip-flops ($_DFF_, $dff, and $adff cells) with a constant data input
and replaces them with a constant driver.

8.1.5 The opt_clean pass

This pass identifies unused signals and cells and removes them from the design. It also creates an \
unused_bits attribute on wires with unused bits. This attribute can be used for debugging or by other
optimization passes.

8.1.6 The opt_merge pass

This pass performs trivial resource sharing. This means that this pass identifies cells with identical inputs
and replaces them with a single instance of the cell.

The option -nomux can be used to disable resource sharing for multiplexer cells ($mux and $pmux. This
can be useful as it prevents multiplexer trees to be merged, which might prevent opt_muxtree to identify
possible optimizations.

8.2 FSM extraction and encoding

The fsm pass performs finite-state-machine (FSM) extraction and recoding. The fsm pass simply executes
the following other passes:

• Identify and extract FSMs:

– fsm_detect

– fsm_extract

• Basic optimizations:

– fsm_opt

– opt_clean

– fsm_opt

• Expanding to nearby gate-logic (if called with -expand):

– fsm_expand

– opt_clean

– fsm_opt

• Re-code FSM states (unless called with -norecode):

– fsm_recode

• Print information about FSMs:

– fsm_info

• Export FSMs in KISS2 file format (if called with -export):

8.2. FSM extraction and encoding 75

YosysHQ Yosys

– fsm_export

• Map FSMs to RTL cells (unless called with -nomap):

– fsm_map

The fsm_detect pass identifies FSM state registers and marks them using the \fsm_encoding = "auto"
attribute. The fsm_extract extracts all FSMs marked using the \fsm_encoding attribute (unless \
fsm_encoding is set to “none”) and replaces the corresponding RTL cells with a $fsm cell. All other
fsm_ passes operate on these $fsm cells. The fsm_map call finally replaces the $fsm cells with RTL cells.

Note that these optimizations operate on an RTL netlist. I.e. the fsm pass should be executed after the proc
pass has transformed all RTLIL::Process objects to RTL cells.

The algorithms used for FSM detection and extraction are influenced by a more general reported technique
[STGR10].

8.2.1 FSM detection

The fsm_detect pass identifies FSM state registers. It sets the \fsm_encoding = "auto" attribute on any
(multi-bit) wire that matches the following description:

• Does not already have the \fsm_encoding attribute.

• Is not an output of the containing module.

• Is driven by single $dff or $adff cell.

• The \D-Input of this $dff or $adff cell is driven by a multiplexer tree that only has constants or the old
state value on its leaves.

• The state value is only used in the said multiplexer tree or by simple relational cells that compare the
state value to a constant (usually $eq cells).

This heuristic has proven to work very well. It is possible to overwrite it by setting \fsm_encoding =
"auto" on registers that should be considered FSM state registers and setting \fsm_encoding = "none" on
registers that match the above criteria but should not be considered FSM state registers.

Note however that marking state registers with \fsm_encoding that are not suitable for FSM recoding can
cause synthesis to fail or produce invalid results.

8.2.2 FSM extraction

The fsm_extract pass operates on all state signals marked with the (\fsm_encoding != "none") attribute.
For each state signal the following information is determined:

• The state registers

• The asynchronous reset state if the state registers use asynchronous reset

• All states and the control input signals used in the state transition functions

• The control output signals calculated from the state signals and control inputs

• A table of all state transitions and corresponding control inputs- and outputs

The state registers (and asynchronous reset state, if applicable) is simply determined by identifying the
driver for the state signal.

From there the $mux-tree driving the state register inputs is recursively traversed. All select inputs are
control signals and the leaves of the $mux-tree are the states. The algorithm fails if a non-constant leaf that
is not the state signal itself is found.

76 Chapter 8. Optimizations

YosysHQ Yosys

The list of control outputs is initialized with the bits from the state signal. It is then extended by adding
all values that are calculated by cells that compare the state signal with a constant value.

In most cases this will cover all uses of the state register, thus rendering the state encoding arbitrary. If
however a design uses e.g. a single bit of the state value to drive a control output directly, this bit of the
state signal will be transformed to a control output of the same value.

Finally, a transition table for the FSM is generated. This is done by using the ConstEval C++ helper class
(defined in kernel/consteval.h) that can be used to evaluate parts of the design. The ConstEval class can be
asked to calculate a given set of result signals using a set of signal-value assignments. It can also be passed
a list of stop-signals that abort the ConstEval algorithm if the value of a stop-signal is needed in order to
calculate the result signals.

The fsm_extract pass uses the ConstEval class in the following way to create a transition table. For each
state:

1. Create a ConstEval object for the module containing the FSM

2. Add all control inputs to the list of stop signals

3. Set the state signal to the current state

4. Try to evaluate the next state and control output

5. If step 4 was not successful:

• Recursively goto step 4 with the offending stop-signal set to 0.

• Recursively goto step 4 with the offending stop-signal set to 1.

6. If step 4 was successful: Emit transition

Finally a $fsm cell is created with the generated transition table and added to the module. This new cell is
connected to the control signals and the old drivers for the control outputs are disconnected.

8.2.3 FSM optimization

The fsm_opt pass performs basic optimizations on $fsm cells (not including state recoding). The following
optimizations are performed (in this order):

• Unused control outputs are removed from the $fsm cell. The attribute \unused_bits (that is usually
set by the opt_clean pass) is used to determine which control outputs are unused.

• Control inputs that are connected to the same driver are merged.

• When a control input is driven by a control output, the control input is removed and the transition
table altered to give the same performance without the external feedback path.

• Entries in the transition table that yield the same output and only differ in the value of a single control
input bit are merged and the different bit is removed from the sensitivity list (turned into a don’t-care
bit).

• Constant inputs are removed and the transition table is altered to give an unchanged behaviour.

• Unused inputs are removed.

8.2. FSM extraction and encoding 77

YosysHQ Yosys

8.2.4 FSM recoding

The fsm_recode pass assigns new bit pattern to the states. Usually this also implies a change in the width
of the state signal. At the moment of this writing only one-hot encoding with all-zero for the reset state is
supported.

The fsm_recode pass can also write a text file with the changes performed by it that can be used when
verifying designs synthesized by Yosys using Synopsys Formality .

8.3 Logic optimization

Yosys can perform multi-level combinational logic optimization on gate-level netlists using the external
program ABC . The abc pass extracts the combinational gate-level parts of the design, passes it through
ABC, and re-integrates the results. The abc pass can also be used to perform other operations using ABC,
such as technology mapping (see Sec 9.3 for details).

78 Chapter 8. Optimizations

CHAPTER

NINE

TECHNOLOGY MAPPING

Previous chapters outlined how HDL code is transformed into an RTL netlist. The RTL netlist is still based
on abstract coarse-grain cell types like arbitrary width adders and even multipliers. This chapter covers how
an RTL netlist is transformed into a functionally equivalent netlist utilizing the cell types available in the
target architecture.

Technology mapping is often performed in two phases. In the first phase RTL cells are mapped to an internal
library of single-bit cells (see Sec. 5.2). In the second phase this netlist of internal gate types is transformed
to a netlist of gates from the target technology library.

When the target architecture provides coarse-grain cells (such as block ram or ALUs), these must be mapped
to directly form the RTL netlist, as information on the coarse-grain structure of the design is lost when it is
mapped to bit-width gate types.

9.1 Cell substitution

The simplest form of technology mapping is cell substitution, as performed by the techmap pass. This pass,
when provided with a Verilog file that implements the RTL cell types using simpler cells, simply replaces
the RTL cells with the provided implementation.

When no map file is provided, techmap uses a built-in map file that maps the Yosys RTL cell types to the
internal gate library used by Yosys. The curious reader may find this map file as techlibs/common/techmap.v
in the Yosys source tree.

Additional features have been added to techmap to allow for conditional mapping of cells (see techmap -
generic technology mapper). This can for example be useful if the target architecture supports hardware
multipliers for certain bit-widths but not for others.

A usual synthesis flow would first use the techmap pass to directly map some RTL cells to coarse-grain cells
provided by the target architecture (if any) and then use techmap with the built-in default file to map the
remaining RTL cells to gate logic.

9.2 Subcircuit substitution

Sometimes the target architecture provides cells that are more powerful than the RTL cells used by Yosys.
For example a cell in the target architecture that can calculate the absolute-difference of two numbers does
not match any single RTL cell type but only combinations of cells.

For these cases Yosys provides the extract pass that can match a given set of modules against a design and
identify the portions of the design that are identical (i.e. isomorphic subcircuits) to any of the given modules.
These matched subcircuits are then replaced by instances of the given modules.

79

YosysHQ Yosys

The extract pass also finds basic variations of the given modules, such as swapped inputs on commutative
cell types.

In addition to this the extract pass also has limited support for frequent subcircuit mining, i.e. the process
of finding recurring subcircuits in the design. This has a few applications, including the design of new
coarse-grain architectures [GW13].

The hard algorithmic work done by the extract pass (solving the isomorphic subcircuit problem and frequent
subcircuit mining) is performed using the SubCircuit library that can also be used stand-alone without Yosys
(see SubCircuit).

9.3 Gate-level technology mapping

On the gate-level the target architecture is usually described by a “Liberty file”. The Liberty file format is
an industry standard format that can be used to describe the behaviour and other properties of standard
library cells .

Mapping a design utilizing the Yosys internal gate library (e.g. as a result of mapping it to this representation
using the techmap pass) is performed in two phases.

First the register cells must be mapped to the registers that are available on the target architectures. The
target architecture might not provide all variations of d-type flip-flops with positive and negative clock edge,
high-active and low-active asynchronous set and/or reset, etc. Therefore the process of mapping the registers
might add additional inverters to the design and thus it is important to map the register cells first.

Mapping of the register cells may be performed by using the dfflibmap pass. This pass expects a Liberty file
as argument (using the -liberty option) and only uses the register cells from the Liberty file.

Secondly the combinational logic must be mapped to the target architecture. This is done using the external
program ABC via the abc pass by using the -liberty option to the pass. Note that in this case only the
combinatorial cells are used from the cell library.

Occasionally Liberty files contain trade secrets (such as sensitive timing information) that cannot be shared
freely. This complicates processes such as reporting bugs in the tools involved. When the information
in the Liberty file used by Yosys and ABC are not part of the sensitive information, the additional tool
yosys-filterlib (see yosys-filterlib) can be used to strip the sensitive information from the Liberty file.

80 Chapter 9. Technology mapping

CHAPTER

TEN

MEMORY MAPPING

Documentation for the Yosys memory_libmap memory mapper. Note that not all supported patterns are
included in this document, of particular note is that combinations of multiple patterns should generally
work. For example, Write port with byte enables could be used in conjunction with any of the simple dual
port (SDP) models. In general if a hardware memory definition does not support a given configuration,
additional logic will be instantiated to guarantee behaviour is consistent with simulation.

See also: passes/memory/memlib.md

10.1 Additional notes

10.1.1 Memory kind selection

The memory inference code will automatically pick target memory primitive based on memory geometry
and features used. Depending on the target, there can be up to four memory primitive classes available for
selection:

• FF RAM (aka logic): no hardware primitive used, memory lowered to a bunch of FFs and multiplexers

– Can handle arbitrary number of write ports, as long as all write ports are in the same clock
domain

– Can handle arbitrary number and kind of read ports

• LUT RAM (aka distributed RAM): uses LUT storage as RAM

– Supported on most FPGAs (with notable exception of ice40)

– Usually has one synchronous write port, one or more asynchronous read ports

– Small

– Will never be used for ROMs (lowering to plain LUTs is always better)

• Block RAM: dedicated memory tiles

– Supported on basically all FPGAs

– Supports only synchronous reads

– Two ports with separate clocks

– Usually supports true dual port (with notable exception of ice40 that only supports SDP)

– Usually supports asymmetric memories and per-byte write enables

– Several kilobits in size

• Huge RAM:

81

https://github.com/YosysHQ/yosys/blob/master/passes/memory/memlib.md

YosysHQ Yosys

– Only supported on several targets:

∗ Some Xilinx UltraScale devices (UltraRAM)

· Two ports, both with mutually exclusive synchronous read and write

· Single clock

· Initial data must be all-0

∗ Some ice40 devices (SPRAM)

· Single port with mutually exclusive synchronous read and write

· Does not support initial data

∗ Nexus (large RAM)

· Two ports, both with mutually exclusive synchronous read and write

· Single clock

– Will not be automatically selected by memory inference code, needs explicit opt-in via ram_style
attribute

In general, you can expect the automatic selection process to work roughly like this:

• If any read port is asynchronous, only LUT RAM (or FF RAM) can be used.

• If there is more than one write port, only block RAM can be used, and this needs to be a hardware-
supported true dual port pattern

– . . . unless all write ports are in the same clock domain, in which case FF RAM can also be used,
but this is generally not what you want for anything but really small memories

• Otherwise, either FF RAM, LUT RAM, or block RAM will be used, depending on memory size

This process can be overridden by attaching a ram_style attribute to the memory:

• (* ram_style = “logic” *) selects FF RAM

• (* ram_style = “distributed” *) selects LUT RAM

• (* ram_style = “block” *) selects block RAM

• (* ram_style = “huge” *) selects huge RAM

It is an error if this override cannot be realized for the given target.

Many alternate spellings of the attribute are also accepted, for compatibility with other software.

10.1.2 Initial data

Most FPGA targets support initializing all kinds of memory to user-provided values. If explicit initialization
is not used the initial memory value is undefined. Initial data can be provided by either initial statements
writing memory cells one by one of $readmemh or $readmemb system tasks. For an example pattern, see
Synchronous read port with initial value.

82 Chapter 10. Memory mapping

YosysHQ Yosys

10.1.3 Write port with byte enables

• Byte enables can be used with any supported pattern

• To ensure that multiple writes will be merged into one port, they need to have disjoint bit ranges, have
the same address, and the same clock

• Any write enable granularity will be accepted (down to per-bit write enables), but using smaller
granularity than natively supported by the target is very likely to be inefficient (eg. using 4-bit bytes
on ECP5 will result in either padding the bytes with 5 dummy bits to native 9-bit units or splitting
the RAM into two block RAMs)

reg [31 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable[0])

mem[write_addr][7:0] <= write_data[7:0];
if (write_enable[1])

mem[write_addr][15:8] <= write_data[15:8];
if (write_enable[2])

mem[write_addr][23:16] <= write_data[23:16];
if (write_enable[3])

mem[write_addr][31:24] <= write_data[31:24];
if (read_enable)

read_data <= mem[read_addr];
end

10.2 Simple dual port (SDP) memory patterns

10.2.1 Asynchronous-read SDP

• This will result in LUT RAM on supported targets

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk)

if (write_enable)
mem[write_addr] <= write_data;

assign read_data = mem[read_addr];

10.2.2 Synchronous SDP with clock domain crossing

• Will result in block RAM or LUT RAM depending on size

• No behavior guarantees in case of simultaneous read and write to the same address

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge write_clk) begin
if (write_enable)

mem[write_addr] <= write_data;
end

(continues on next page)

10.2. Simple dual port (SDP) memory patterns 83

YosysHQ Yosys

(continued from previous page)

always @(posedge read_clk) begin
if (read_enable)

read_data <= mem[read_addr];
end

10.2.3 Synchronous SDP read first

• The read and write parts can be in the same or different processes.

• Will result in block RAM or LUT RAM depending on size

• As long as the same clock is used for both, yosys will ensure read-first behavior. This may require
extra circuitry on some targets for block RAM. If this is not necessary, use one of the patterns below.

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)

mem[write_addr] <= write_data;
if (read_enable)

read_data <= mem[read_addr];
end

10.2.4 Synchronous SDP with undefined collision behavior

• Like above, but the read value is undefined when read and write ports target the same address in the
same cycle

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)

mem[write_addr] <= write_data;

if (read_enable) begin
read_data <= mem[read_addr];

// this if block
if (write_enable && read_addr == write_addr)

read_data <= 'x;
end

end

• Or below, using the no_rw_check attribute

(* no_rw_check *)
reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)

(continues on next page)

84 Chapter 10. Memory mapping

YosysHQ Yosys

(continued from previous page)

mem[write_addr] <= write_data;

if (read_enable)
read_data <= mem[read_addr];

end

10.2.5 Synchronous SDP with write-first behavior

• Will result in block RAM or LUT RAM depending on size

• May use additional circuitry for block RAM if write-first is not natively supported. Will always use
additional circuitry for LUT RAM.

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)

mem[write_addr] <= write_data;

if (read_enable) begin
read_data <= mem[read_addr];
if (write_enable && read_addr == write_addr)

read_data <= write_data;
end

end

10.2.6 Synchronous SDP with write-first behavior (alternate pattern)

• This pattern is supported for compatibility, but is much less flexible than the above

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)

mem[write_addr] <= write_data;
read_addr_reg <= read_addr;

end

assign read_data = mem[read_addr_reg];

10.2. Simple dual port (SDP) memory patterns 85

YosysHQ Yosys

10.3 Single-port RAM memory patterns

10.3.1 Asynchronous-read single-port RAM

• Will result in single-port LUT RAM on supported targets

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
always @(posedge clk)

if (write_enable)
mem[addr] <= write_data;

assign read_data = mem[addr];

10.3.2 Synchronous single-port RAM with mutually exclusive read/write

• Will result in single-port block RAM or LUT RAM depending on size

• This is the correct pattern to infer ice40 SPRAM (with manual ram_style selection)

• On targets that don’t support read/write block RAM ports (eg. ice40), will result in SDP block RAM
instead

• For block RAM, will use “NO_CHANGE” mode if available

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)

mem[addr] <= write_data;
else if (read_enable)

read_data <= mem[addr];
end

10.3.3 Synchronous single-port RAM with read-first behavior

• Will only result in single-port block RAM when read-first behavior is natively supported; otherwise,
SDP RAM with additional circuitry will be used

• Many targets (Xilinx, ECP5, . . .) can only natively support read-first/write-first single-port RAM (or
TDP RAM) where the write_enable signal implies the read_enable signal (ie. can never write without
reading). The memory inference code will run a simple SAT solver on the control signals to determine
if this is the case, and insert emulation circuitry if it cannot be easily proven.

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)

mem[addr] <= write_data;
if (read_enable)

read_data <= mem[addr];
end

86 Chapter 10. Memory mapping

YosysHQ Yosys

10.3.4 Synchronous single-port RAM with write-first behavior

• Will result in single-port block RAM or LUT RAM when supported

• Block RAMs will require extra circuitry if write-first behavior not natively supported

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)

mem[addr] <= write_data;
if (read_enable)

if (write_enable)
read_data <= write_data;

else
read_data <= mem[addr];

end

10.3.5 Synchronous read port with initial value

• Initial read port values can be combined with any other supported pattern

• If block RAM is used and initial read port values are not natively supported by the target, small
emulation circuit will be inserted

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];
reg [DATA_WIDTH - 1 : 0] read_data;
initial read_data = 'h1234;

always @(posedge clk) begin
if (write_enable)

mem[write_addr] <= write_data;
if (read_enable)

read_data <= mem[read_addr];
end

10.3. Single-port RAM memory patterns 87

YosysHQ Yosys

10.4 Read register reset patterns

Resets can be combined with any other supported pattern (except that synchronous reset and asynchronous
reset cannot both be used on a single read port). If block RAM is used and the selected reset (synchronous
or asynchronous) is used but not natively supported by the target, small emulation circuitry will be inserted.

10.4.1 Synchronous reset, reset priority over enable

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)

mem[write_addr] <= write_data;

if (read_reset)
read_data <= {sval};

else if (read_enable)
read_data <= mem[read_addr];

end

10.4.2 Synchronous reset, enable priority over reset

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)

mem[write_addr] <= write_data;
if (read_enable)

if (read_reset)
read_data <= 'h1234;

else
read_data <= mem[read_addr];

end

10.4.3 Synchronous read port with asynchronous reset

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)

mem[write_addr] <= write_data;
end

always @(posedge clk, posedge reset_read) begin
if (reset_read)

read_data <= 'h1234;
else if (read_enable)

(continues on next page)

88 Chapter 10. Memory mapping

YosysHQ Yosys

(continued from previous page)

read_data <= mem[read_addr];
end

10.5 Asymmetric memory patterns

To construct an asymmetric memory (memory with read/write ports of differing widths):

• Declare the memory with the width of the narrowest intended port

• Split all wide ports into multiple narrow ports

• To ensure the wide ports will be correctly merged:

– For the address, use a concatenation of actual address in the high bits and a constant in the low
bits

– Ensure the actual address is identical for all ports belonging to the wide port

– Ensure that clock is identical

– For read ports, ensure that enable/reset signals are identical (for write ports, the enable signal
may vary — this will result in using the byte enable functionality)

Asymmetric memory is supported on all targets, but may require emulation circuitry where not natively
supported. Note that when the memory is larger than the underlying block RAM primitive, hardware
asymmetric memory support is likely not to be used even if present as it is more expensive.

10.5.1 Wide synchronous read port

reg [7:0] mem [0:255];
wire [7:0] write_addr;
wire [5:0] read_addr;
wire [7:0] write_data;
reg [31:0] read_data;

always @(posedge clk) begin
if (write_enable)

mem[write_addr] <= write_data;
if (read_enable) begin

read_data[7:0] <= mem[{read_addr, 2'b00}];
read_data[15:8] <= mem[{read_addr, 2'b01}];
read_data[23:16] <= mem[{read_addr, 2'b10}];
read_data[31:24] <= mem[{read_addr, 2'b11}];

end
end

10.5. Asymmetric memory patterns 89

YosysHQ Yosys

10.5.2 Wide asynchronous read port

• Note: the only target natively supporting this pattern is Xilinx UltraScale

reg [7:0] mem [0:511];
wire [8:0] write_addr;
wire [5:0] read_addr;
wire [7:0] write_data;
wire [63:0] read_data;

always @(posedge clk) begin
if (write_enable)

mem[write_addr] <= write_data;
end

assign read_data[7:0] = mem[{read_addr, 3'b000}];
assign read_data[15:8] = mem[{read_addr, 3'b001}];
assign read_data[23:16] = mem[{read_addr, 3'b010}];
assign read_data[31:24] = mem[{read_addr, 3'b011}];
assign read_data[39:32] = mem[{read_addr, 3'b100}];
assign read_data[47:40] = mem[{read_addr, 3'b101}];
assign read_data[55:48] = mem[{read_addr, 3'b110}];
assign read_data[63:56] = mem[{read_addr, 3'b111}];

10.5.3 Wide write port

reg [7:0] mem [0:255];
wire [5:0] write_addr;
wire [7:0] read_addr;
wire [31:0] write_data;
reg [7:0] read_data;

always @(posedge clk) begin
if (write_enable[0])

mem[{write_addr, 2'b00}] <= write_data[7:0];
if (write_enable[1])

mem[{write_addr, 2'b01}] <= write_data[15:8];
if (write_enable[2])

mem[{write_addr, 2'b10}] <= write_data[23:16];
if (write_enable[3])

mem[{write_addr, 2'b11}] <= write_data[31:24];
if (read_enable)

read_data <= mem[read_addr];
end

90 Chapter 10. Memory mapping

YosysHQ Yosys

10.6 True dual port (TDP) patterns

• Many different variations of true dual port memory can be created by combining two single-port RAM
patterns on the same memory

• When TDP memory is used, memory inference code has much less maneuver room to create requested
semantics compared to individual single-port patterns (which can end up lowered to SDP memory
where necessary) — supported patterns depend strongly on the target

• In particular, when both ports have the same clock, it’s likely that “undefined collision” mode needs
to be manually selected to enable TDP memory inference

• The examples below are non-exhaustive — many more combinations of port types are possible

• Note: if two write ports are in the same process, this defines a priority relation between them (if both
ports are active in the same clock, the later one wins). On almost all targets, this will result in a bit
of extra circuitry to ensure the priority semantics. If this is not what you want, put them in separate
processes.

– Priority is not supported when using the verific front end and any priority semantics are ignored.

10.6.1 TDP with different clocks, exclusive read/write

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk_a) begin
if (write_enable_a)

mem[addr_a] <= write_data_a;
else if (read_enable_a)

read_data_a <= mem[addr_a];
end

always @(posedge clk_b) begin
if (write_enable_b)

mem[addr_b] <= write_data_b;
else if (read_enable_b)

read_data_b <= mem[addr_b];
end

10.6.2 TDP with same clock, read-first behavior

• This requires hardware inter-port read-first behavior, and will only work on some targets (Xilinx,
Nexus)

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable_a)

mem[addr_a] <= write_data_a;
if (read_enable_a)

read_data_a <= mem[addr_a];
end

(continues on next page)

10.6. True dual port (TDP) patterns 91

YosysHQ Yosys

(continued from previous page)

always @(posedge clk) begin
if (write_enable_b)

mem[addr_b] <= write_data_b;
if (read_enable_b)

read_data_b <= mem[addr_b];
end

10.6.3 TDP with multiple read ports

• The combination of a single write port with an arbitrary amount of read ports is supported on all
targets — if a multi-read port primitive is available (like Xilinx RAM64M), it’ll be used as appropriate.
Otherwise, the memory will be automatically split into multiple primitives.

reg [31:0] mem [0:31];

always @(posedge clk) begin
if (write_enable)

mem[write_addr] <= write_data;
end

assign read_data_a = mem[read_addr_a];
assign read_data_b = mem[read_addr_b];
assign read_data_c = mem[read_addr_c];

10.7 Not yet supported patterns

10.7.1 Synchronous SDP with write-first behavior via blocking assignments

• Would require modifications to the Yosys Verilog frontend.

• Use Synchronous SDP with write-first behavior instead

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @(posedge clk) begin
if (write_enable)

mem[write_addr] = write_data;

if (read_enable)
read_data <= mem[read_addr];

end

92 Chapter 10. Memory mapping

YosysHQ Yosys

10.7.2 Asymmetric memories via part selection

• Would require major changes to the Verilog frontend.

• Build wide ports out of narrow ports instead (see Wide synchronous read port)

reg [31:0] mem [2**ADDR_WIDTH - 1 : 0];

wire [1:0] byte_lane;
wire [7:0] write_data;

always @(posedge clk) begin
if (write_enable)

mem[write_addr][byte_lane * 8 +: 8] <= write_data;

if (read_enable)
read_data <= mem[read_addr];

end

10.8 Undesired patterns

10.8.1 Asynchronous writes

• Not supported in modern FPGAs

• Not supported in yosys code anyhow

reg [DATA_WIDTH - 1 : 0] mem [2**ADDR_WIDTH - 1 : 0];

always @* begin
if (write_enable)

mem[write_addr] = write_data;
end

assign read_data = mem[read_addr];

10.8. Undesired patterns 93

YosysHQ Yosys

94 Chapter 10. Memory mapping

APPENDIX

A

AUXILIARY LIBRARIES

The Yosys source distribution contains some auxiliary libraries that are bundled with Yosys.

A.1 SHA1

The files in libs/sha1/ provide a public domain SHA1 implementation written by Steve Reid, Bruce
Guenter, and Volker Grabsch. It is used for generating unique names when specializing parameterized
modules.

A.2 BigInt

The files in libs/bigint/ provide a library for performing arithmetic with arbitrary length integers. It is
written by Matt McCutchen.

The BigInt library is used for evaluating constant expressions, e.g. using the ConstEval class provided in
kernel/consteval.h.

See also: http://mattmccutchen.net/bigint/

A.3 SubCircuit

The files in libs/subcircuit provide a library for solving the subcircuit isomorphism problem. It is written
by C. Wolf and based on the Ullmann Subgraph Isomorphism Algorithm [Ull76]. It is used by the extract
pass (see extract - find subcircuits and replace them with cells).

A.4 ezSAT

The files in libs/ezsat provide a library for simplifying generating CNF formulas for SAT solvers. It also
contains bindings of MiniSAT. The ezSAT library is written by C. Wolf. It is used by the sat pass (see sat -
solve a SAT problem in the circuit).

95

http://mattmccutchen.net/bigint/

YosysHQ Yosys

96 Appendix A. Auxiliary libraries

APPENDIX

B

AUXILIARY PROGRAMS

Besides the main yosys executable, the Yosys distribution contains a set of additional helper programs.

B.1 yosys-config

The yosys-config tool (an auto-generated shell-script) can be used to query compiler options and other
information needed for building loadable modules for Yosys. See Sec. Section 6 for details.

B.2 yosys-filterlib

The yosys-filterlib tool is a small utility that can be used to strip or extract information from a Liberty file.
See Sec. 9.3 for details.

B.3 yosys-abc

This is a fork of ABC with a small set of custom modifications that have not yet been accepted upstream.
Not all versions of Yosys work with all versions of ABC. So Yosys comes with its own yosys-abc to avoid
compatibility issues between the two.

97

YosysHQ Yosys

98 Appendix B. Auxiliary programs

APPENDIX

C

RTLIL TEXT REPRESENTATION

This appendix documents the text representation of RTLIL in extended Backus-Naur form (EBNF).

The grammar is not meant to represent semantic limitations. That is, the grammar is “permissive”, and
later stages of processing perform more rigorous checks.

The grammar is also not meant to represent the exact grammar used in the RTLIL frontend, since that gram-
mar is specific to processing by lex and yacc, is even more permissive, and is somewhat less understandable
than simple EBNF notation.

Finally, note that all statements (rules ending in -stmt) terminate in an end-of-line. Because of this, a
statement cannot be broken into multiple lines.

C.1 Lexical elements

C.1.1 Characters

An RTLIL file is a stream of bytes. Strictly speaking, a “character” in an RTLIL file is a single byte. The
lexer treats multi-byte encoded characters as consecutive single-byte characters. While other encodings may
work, UTF-8 is known to be safe to use. Byte order marks at the beginning of the file will cause an error.

ASCII spaces (32) and tabs (9) separate lexer tokens.

A nonws character, used in identifiers, is any character whose encoding consists solely of bytes above ASCII
space (32).

An eol is one or more consecutive ASCII newlines (10) and carriage returns (13).

C.1.2 Identifiers

There are two types of identifiers in RTLIL:

• Publically visible identifiers

• Auto-generated identifiers

<id> ::= <public-id> | <autogen-id>
<public-id> ::= \ <nonws>+
<autogen-id> ::= $ <nonws>+

99

YosysHQ Yosys

C.1.3 Values

A value consists of a width in bits and a bit representation, most significant bit first. Bits may be any of:

• 0: A logic zero value

• 1: A logic one value

• x: An unknown logic value (or don’t care in case patterns)

• z: A high-impedance value (or don’t care in case patterns)

• m: A marked bit (internal use only)

• -: A don’t care value

An integer is simply a signed integer value in decimal format. Warning: Integer constants are limited to 32
bits. That is, they may only be in the range [−2147483648, 2147483648). Integers outside this range will
result in an error.

<value> ::= <decimal-digit>+ ' <binary-digit>*
<decimal-digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<binary-digit> ::= 0 | 1 | x | z | m | -
<integer> ::= -? <decimal-digit>+

C.1.4 Strings

A string is a series of characters delimited by double-quote characters. Within a string, any character except
ASCII NUL (0) may be used. In addition, certain escapes can be used:

• \n: A newline

• \t: A tab

• \ooo: A character specified as a one, two, or three digit octal value

All other characters may be escaped by a backslash, and become the following character. Thus:

• \\: A backslash

• \": A double-quote

• \r: An ‘r’ character

C.1.5 Comments

A comment starts with a # character and proceeds to the end of the line. All comments are ignored.

C.2 File

A file consists of an optional autoindex statement followed by zero or more modules.

<file> ::= <autoidx-stmt>? <module>*

100 Appendix C. RTLIL text representation

YosysHQ Yosys

C.2.1 Autoindex statements

The autoindex statement sets the global autoindex value used by Yosys when it needs to generate a unique
name, e.g. flattenN. The N part is filled with the value of the global autoindex value, which is subsequently
incremented. This global has to be dumped into RTLIL, otherwise e.g. dumping and running a pass would
have different properties than just running a pass on a warm design.

<autoidx-stmt> ::= autoidx <integer> <eol>

C.2.2 Modules

Declares a module, with zero or more attributes, consisting of zero or more wires, memories, cells, processes,
and connections.

<module> ::= <attr-stmt>* <module-stmt> <module-body> <module-end-stmt>
<module-stmt> ::= module <id> <eol>
<module-body> ::= (<param-stmt>

| <wire>
| <memory>
| <cell>
| <process>)*

<param-stmt> ::= parameter <id> <constant>? <eol>
<constant> ::= <value> | <integer> | <string>
<module-end-stmt> ::= end <eol>

C.2.3 Attribute statements

Declares an attribute with the given identifier and value.

<attr-stmt> ::= attribute <id> <constant> <eol>

C.2.4 Signal specifications

A signal is anything that can be applied to a cell port, i.e. a constant value, all bits or a selection of bits
from a wire, or concatenations of those.

Warning: When an integer constant is a sigspec, it is always 32 bits wide, 2’s complement. For example, a
constant of −1 is the same as 32'11111111111111111111111111111111, while a constant of 1 is the same
as 32'1.

See Sec. 4.2.4 for an overview of signal specifications.

<sigspec> ::= <constant>
| <wire-id>
| <sigspec> [<integer> (:<integer>)?]
| { <sigspec>* }

C.2. File 101

YosysHQ Yosys

C.2.5 Connections

Declares a connection between the given signals.

<conn-stmt> ::= connect <sigspec> <sigspec> <eol>

C.2.6 Wires

Declares a wire, with zero or more attributes, with the given identifier and options in the enclosing module.

See Sec. 4.2.3 for an overview of wires.

<wire> ::= <attr-stmt>* <wire-stmt>
<wire-stmt> ::= wire <wire-option>* <wire-id> <eol>
<wire-id> ::= <id>
<wire-option> ::= width <integer>

| offset <integer>
| input <integer>
| output <integer>
| inout <integer>
| upto
| signed

C.2.7 Memories

Declares a memory, with zero or more attributes, with the given identifier and options in the enclosing
module.

See Sec. 4.2.6 for an overview of memory cells, and Sec. 5.1.5 for details about memory cell types.

<memory> ::= <attr-stmt>* <memory-stmt>
<memory-stmt> ::= memory <memory-option>* <id> <eol>
<memory-option> ::= width <integer>

| size <integer>
| offset <integer>

C.2.8 Cells

Declares a cell, with zero or more attributes, with the given identifier and type in the enclosing module.

Cells perform functions on input signals. See Chap. 5 for a detailed list of cell types.

<cell> ::= <attr-stmt>* <cell-stmt> <cell-body-stmt>* <cell-end-stmt>
<cell-stmt> ::= cell <cell-type> <cell-id> <eol>
<cell-id> ::= <id>
<cell-type> ::= <id>
<cell-body-stmt> ::= parameter (signed | real)? <id> <constant> <eol>

| connect <id> <sigspec> <eol>
<cell-end-stmt> ::= end <eol>

102 Appendix C. RTLIL text representation

YosysHQ Yosys

C.2.9 Processes

Declares a process, with zero or more attributes, with the given identifier in the enclosing module. The body
of a process consists of zero or more assignments, exactly one switch, and zero or more syncs.

See Sec. 4.2.5 for an overview of processes.

<process> ::= <attr-stmt>* <proc-stmt> <process-body> <proc-end-stmt>
<proc-stmt> ::= process <id> <eol>
<process-body> ::= <assign-stmt>* <switch>? <assign-stmt>* <sync>*
<assign-stmt> ::= assign <dest-sigspec> <src-sigspec> <eol>
<dest-sigspec> ::= <sigspec>
<src-sigspec> ::= <sigspec>
<proc-end-stmt> ::= end <eol>

C.2.10 Switches

Switches test a signal for equality against a list of cases. Each case specifies a comma-separated list of
signals to check against. If there are no signals in the list, then the case is the default case. The body of
a case consists of zero or more switches and assignments. Both switches and cases may have zero or more
attributes.

<switch> ::= <switch-stmt> <case>* <switch-end-stmt>
<switch-stmt> := <attr-stmt>* switch <sigspec> <eol>
<case> ::= <attr-stmt>* <case-stmt> <case-body>
<case-stmt> ::= case <compare>? <eol>
<compare> ::= <sigspec> (, <sigspec>)*
<case-body> ::= (<switch> | <assign-stmt>)*
<switch-end-stmt> ::= end <eol>

C.2.11 Syncs

Syncs update signals with other signals when an event happens. Such an event may be:

• An edge or level on a signal

• Global clock ticks

• Initialization

• Always

<sync> ::= <sync-stmt> <update-stmt>*
<sync-stmt> ::= sync <sync-type> <sigspec> <eol>

| sync global <eol>
| sync init <eol>
| sync always <eol>

<sync-type> ::= low | high | posedge | negedge | edge
<update-stmt> ::= update <dest-sigspec> <src-sigspec> <eol>

C.2. File 103

YosysHQ Yosys

104 Appendix C. RTLIL text representation

APPENDIX

D

010: CONVERTING VERILOG TO BLIF PAGE

D.1 Installation

Yosys written in C++ (using features from C++11) and is tested on modern Linux. It should compile fine
on most UNIX systems with a C++11 compiler. The README file contains useful information on building
Yosys and its prerequisites.

Yosys is a large and feature-rich program with a couple of dependencies. It is, however, possible to deactivate
some of the dependencies in the Makefile, resulting in features in Yosys becoming unavailable. When problems
with building Yosys are encountered, a user who is only interested in the features of Yosys that are discussed
in this Application Note may deactivate TCL, Qt and MiniSAT support in the Makefile and may opt against
building yosys-abc.

This Application Note is based on Yosys GIT Rev. e216e0e from 2013-11-23. The Verilog sources used for
the examples are taken from yosys-bigsim, a collection of real-world designs used for regression testing Yosys.

D.2 Getting started

We start our tour with the Navré processor from yosys-bigsim. The Navré processor is an Open Source AVR
clone. It is a single module (softusb_navre) in a single design file (softusb_navre.v). It also is using only
features that map nicely to the BLIF format, for example it only uses synchronous resets.

Converting softusb_navre.v to softusb_navre.blif could not be easier:

yosys -o softusb_navre.blif -S softusb_navre.v

Behind the scenes Yosys is controlled by synthesis scripts that execute commands that operate on Yosys’ inter-
nal state. For example, the -o softusb_navre.blif option just adds the command write_blif softusb_navre.blif
to the end of the script. Likewise a file on the command line – softusb_navre.v in this case – adds the com-
mand read_verilog softusb_navre.v to the beginning of the synthesis script. In both cases the file type is
detected from the file extension.

Finally the option -S instantiates a built-in default synthesis script. Instead of using -S one could also specify
the synthesis commands for the script on the command line using the -p option, either using individual options
for each command or by passing one big command string with a semicolon-separated list of commands. But
in most cases it is more convenient to use an actual script file.

105

https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/yosys/tree/e216e0e
https://github.com/YosysHQ/yosys-bigsim
http://opencores.org/projects/navre

YosysHQ Yosys

D.3 Using a synthesis script

With a script file we have better control over Yosys. The following script file replicates what the command
from the last section did:

read_verilog softusb_navre.v
hierarchy
proc; opt; memory; opt; techmap; opt
write_blif softusb_navre.blif

The first and last line obviously read the Verilog file and write the BLIF file.

The 2nd line checks the design hierarchy and instantiates parametrized versions of the modules in the design,
if necessary. In the case of this simple design this is a no-op. However, as a general rule a synthesis script
should always contain this command as first command after reading the input files.

The 3rd line does most of the actual work:

• The command opt is the Yosys’ built-in optimizer. It can perform some simple optimizations such as
const-folding and removing unconnected parts of the design. It is common practice to call opt after
each major step in the synthesis procedure. In cases where too much optimization is not appreciated
(for example when analyzing a design), it is recommended to call clean instead of opt.

• The command proc converts processes (Yosys’ internal representation of Verilog always- and initial-
blocks) to circuits of multiplexers and storage elements (various types of flip-flops).

• The command memory converts Yosys’ internal representations of arrays and array accesses to multi-
port block memories, and then maps this block memories to address decoders and flip-flops, unless the
option -nomap is used, in which case the multi-port block memories stay in the design and can then
be mapped to architecture-specific memory primitives using other commands.

• The command techmap turns a high-level circuit with coarse grain cells such as wide adders and mul-
tipliers to a fine-grain circuit of simple logic primitives and single-bit storage elements. The command
does that by substituting the complex cells by circuits of simpler cells. It is possible to provide a custom
set of rules for this process in the form of a Verilog source file, as we will see in the next section.

Now Yosys can be run with the filename of the synthesis script as argument:

yosys softusb_navre.ys

Now that we are using a synthesis script we can easily modify how Yosys synthesizes the design. The first
thing we should customize is the call to the hierarchy command:

Whenever it is known that there are no implicit blackboxes in the design, i.e. modules that are referenced
but are not defined, the hierarchy command should be called with the -check option. This will then cause
synthesis to fail when implicit blackboxes are found in the design.

The 2nd thing we can improve regarding the hierarchy command is that we can tell it the name of the top
level module of the design hierarchy. It will then automatically remove all modules that are not referenced
from this top level module.

For many designs it is also desired to optimize the encodings for the finite state machines (FSMs) in the
design. The fsm command finds FSMs, extracts them, performs some basic optimizations and then generate
a circuit from the extracted and optimized description. It would also be possible to tell the fsm command
to leave the FSMs in their extracted form, so they can be further processed using custom commands. But
in this case we don’t want that.

So now we have the final synthesis script for generating a BLIF file for the Navré CPU:

106 Appendix D. 010: Converting Verilog to BLIF page

YosysHQ Yosys

read_verilog softusb_navre.v
hierarchy -check -top softusb_navre
proc; opt; memory; opt; fsm; opt; techmap; opt
write_blif softusb_navre.blif

D.4 Advanced example: The Amber23 ARMv2a CPU

Our 2nd example is the Amber23 ARMv2a CPU. Once again we base our example on the Verilog code that
is included in yosys-bigsim.

Listing 4.1: amber23.ys

read_verilog a23_alu.v
read_verilog a23_barrel_shift_fpga.v
read_verilog a23_barrel_shift.v
read_verilog a23_cache.v
read_verilog a23_coprocessor.v
read_verilog a23_core.v
read_verilog a23_decode.v
read_verilog a23_execute.v
read_verilog a23_fetch.v
read_verilog a23_multiply.v
read_verilog a23_ram_register_bank.v
read_verilog a23_register_bank.v
read_verilog a23_wishbone.v
read_verilog generic_sram_byte_en.v
read_verilog generic_sram_line_en.v
hierarchy -check -top a23_core
add -global_input globrst 1
proc -global_arst globrst
techmap -map adff2dff.v
opt; memory; opt; fsm; opt; techmap
write_blif amber23.blif

The problem with this core is that it contains no dedicated reset logic. Instead the coding techniques shown
in Listing 4.2 are used to define reset values for the global asynchronous reset in an FPGA implementation.
This design can not be expressed in BLIF as it is. Instead we need to use a synthesis script that transforms
this form to synchronous resets that can be expressed in BLIF.

(Note that there is no problem if this coding techniques are used to model ROM, where the register is
initialized using this syntax but is never updated otherwise.)

Listing 4.1 shows the synthesis script for the Amber23 core. In line 17 the add command is used to add a
1-bit wide global input signal with the name globrst. That means that an input with that name is added to
each module in the design hierarchy and then all module instantiations are altered so that this new signal is
connected throughout the whole design hierarchy.

Listing 4.2: Implicit coding of global asynchronous resets

reg [7:0] a = 13, b;
initial b = 37;

D.4. Advanced example: The Amber23 ARMv2a CPU 107

http://opencores.org/projects/amber
https://github.com/YosysHQ/yosys-bigsim

YosysHQ Yosys

Listing 4.3: adff2dff.v

(* techmap_celltype = "$adff" *)
module adff2dff (CLK, ARST, D, Q);

parameter WIDTH = 1;
parameter CLK_POLARITY = 1;
parameter ARST_POLARITY = 1;
parameter ARST_VALUE = 0;

input CLK, ARST;
input [WIDTH-1:0] D;
output reg [WIDTH-1:0] Q;

wire [1023:0] _TECHMAP_DO_ = "proc";

wire _TECHMAP_FAIL_ =
!CLK_POLARITY || !ARST_POLARITY;

always @(posedge CLK)
if (ARST)

Q <= ARST_VALUE;
else

Q <= D;

endmodule

In line 18 the proc command is called. But in this script the signal name globrst is passed to the command
as a global reset signal for resetting the registers to their assigned initial values.

Finally in line 19 the techmap command is used to replace all instances of flip-flops with asynchronous resets
with flip-flops with synchronous resets. The map file used for this is shown in Listing 4.3. Note how the
techmap_celltype attribute is used in line 1 to tell the techmap command which cells to replace in the design,
how the _TECHMAP_FAIL_ wire in lines 15 and 16 (which evaluates to a constant value) determines if
the parameter set is compatible with this replacement circuit, and how the _TECHMAP_DO_ wire in line
13 provides a mini synthesis-script to be used to process this cell.

Listing 4.4: Test program for the Amber23 CPU (Sieve of Er-
atosthenes). Compiled using GCC 4.6.3 for ARM with -Os -marm
-march=armv2a -mno-thumb-interwork -ffreestanding, linked
with --fix-v4bx set and booted with a custom setup routine writ-
ten in ARM assembler.

#include <stdint.h>
#include <stdbool.h>

#define BITMAP_SIZE 64
#define OUTPORT 0x10000000

static uint32_t bitmap[BITMAP_SIZE/32];

static void bitmap_set(uint32_t idx) { bitmap[idx/32] |= 1 << (idx % 32); }
static bool bitmap_get(uint32_t idx) { return (bitmap[idx/32] & (1 << (idx % 32))) != 0;␣

(continues on next page)

108 Appendix D. 010: Converting Verilog to BLIF page

YosysHQ Yosys

(continued from previous page)

→˓}
static void output(uint32_t val) { *((volatile uint32_t*)OUTPORT) = val; }

int main() {
uint32_t i, j, k;
output(2);
for (i = 0; i < BITMAP_SIZE; i++) {

if (bitmap_get(i)) continue;
output(3+2*i);
for (j = 2*(3+2*i);; j += 3+2*i) {

if (j%2 == 0) continue;
k = (j-3)/2;
if (k >= BITMAP_SIZE) break;
bitmap_set(k);

}
}
output(0);
return 0;

}

D.5 Verification of the Amber23 CPU

The BLIF file for the Amber23 core, generated using Listing 4.1 and Listing 4.3 and the version of the
Amber23 RTL source that is bundled with yosys-bigsim, was verified using the test-bench from yosys-bigsim.
It successfully executed the program shown in Listing 4.4 in the test-bench.

For simulation the BLIF file was converted back to Verilog using ABC. So this test includes the successful
transformation of the BLIF file into ABC’s internal format as well.

The only thing left to write about the simulation itself is that it probably was one of the most energy inefficient
and time consuming ways of successfully calculating the first 31 primes the author has ever conducted.

D.6 Limitations

At the time of this writing Yosys does not support multi-dimensional memories, does not support writing to
individual bits of array elements, does not support initialization of arrays with $readmemb and $readmemh,
and has only limited support for tristate logic, to name just a few limitations.

That being said, Yosys can synthesize an overwhelming majority of real-world Verilog RTL code. The
remaining cases can usually be modified to be compatible with Yosys quite easily.

The various designs in yosys-bigsim are a good place to look for examples of what is within the capabilities
of Yosys.

D.5. Verification of the Amber23 CPU 109

https://github.com/berkeley-abc/abc

YosysHQ Yosys

D.7 Conclusion

Yosys is a feature-rich Verilog-2005 synthesis tool. It has many uses, but one is to provide an easy gateway
from high-level Verilog code to low-level logic circuits.

The command line option -S can be used to quickly synthesize Verilog code to BLIF files without a hassle.

With custom synthesis scripts it becomes possible to easily perform high-level optimizations, such as re-
encoding FSMs. In some extreme cases, such as the Amber23 ARMv2 CPU, the more advanced Yosys
features can be used to change a design to fit a certain need without actually touching the RTL code.

110 Appendix D. 010: Converting Verilog to BLIF page

APPENDIX

E

011: INTERACTIVE DESIGN INVESTIGATION PAGE

E.1 Installation and prerequisites

This Application Note is based on the Yosys GIT Rev. 2b90ba1 from 2013-12-08. The README file covers
how to install Yosys. The show command requires a working installation of GraphViz and xdot for generating
the actual circuit diagrams.

E.2 Overview

This application note is structured as follows:

Introduction to the show command introduces the show command and explains the symbols used in the
circuit diagrams generated by it.

Navigating the design introduces additional commands used to navigate in the design, select portions of the
design, and print additional information on the elements in the design that are not contained in the circuit
diagrams.

Advanced investigation techniques introduces commands to evaluate the design and solve SAT problems
within the design.

Conclusion concludes the document and summarizes the key points.

E.3 Introduction to the show command

Listing 5.1: Yosys script with show commands and example design

$ cat example.ys
read_verilog example.v
show -pause
proc
show -pause
opt
show -pause

$ cat example.v
module example(input clk, a, b, c,

output reg [1:0] y);
always @(posedge clk)

(continues on next page)

111

https://github.com/YosysHQ/yosys
https://github.com/YosysHQ/yosys/tree/2b90ba1
http://www.graphviz.org/

YosysHQ Yosys

(continued from previous page)

if (c)
y <= c ? a + b : 2'd0;

endmodule

a
A

B
$2

$add Y

b

c

A

B

S

$3
$mux Y

PROC $1
example.v:3

clk

y

2'00

a
A

B
$2

$add Y

b

c

A

B

S

$3
$mux Y

BUF

clk CLK

D
$7
$dff Q

yA

B

S

$5
$mux Y

2'00

BUF $0\y[1:0]

a
A

B
$2

$add Y

b

c

A

B

S

$5
$mux Y

clk CLK

D
$7
$dff Q

y

Fig. 5.1: Output of the three show commands from Listing 5.1

The show command generates a circuit diagram for the design in its current state. Various options can be
used to change the appearance of the circuit diagram, set the name and format for the output file, and so
forth. When called without any special options, it saves the circuit diagram in a temporary file and launches
xdot to display the diagram. Subsequent calls to show re-use the xdot instance (if still running).

E.3.1 A simple circuit

Listing 5.1 shows a simple synthesis script and a Verilog file that demonstrate the usage of show in a simple
setting. Note that show is called with the -pause option, that halts execution of the Yosys script until the
user presses the Enter key. The show -pause command also allows the user to enter an interactive shell to
further investigate the circuit before continuing synthesis.

So this script, when executed, will show the design after each of the three synthesis commands. The generated
circuit diagrams are shown in Fig. 5.1.

The first diagram (from top to bottom) shows the design directly after being read by the Verilog front-end.

112 Appendix E. 011: Interactive design investigation page

YosysHQ Yosys

Input and output ports are displayed as octagonal shapes. Cells are displayed as rectangles with inputs on
the left and outputs on the right side. The cell labels are two lines long: The first line contains a unique
identifier for the cell and the second line contains the cell type. Internal cell types are prefixed with a dollar
sign. The Yosys manual contains a chapter on the internal cell library used in Yosys.

Constants are shown as ellipses with the constant value as label. The syntax <bit_width>'<bits> is used
for for constants that are not 32-bit wide and/or contain bits that are not 0 or 1 (i.e. x or z). Ordinary
32-bit constants are written using decimal numbers.

Single-bit signals are shown as thin arrows pointing from the driver to the load. Signals that are multiple
bits wide are shown as think arrows.

Finally processes are shown in boxes with round corners. Processes are Yosys’ internal representation of the
decision-trees and synchronization events modelled in a Verilog always-block. The label reads PROC followed
by a unique identifier in the first line and contains the source code location of the original always-block in the
2nd line. Note how the multiplexer from the ?:-expression is represented as a $mux cell but the multiplexer
from the if-statement is yet still hidden within the process.

The proc command transforms the process from the first diagram into a multiplexer and a d-type flip-flip,
which brings us to the 2nd diagram.

The Rhombus shape to the right is a dangling wire. (Wire nodes are only shown if they are dangling or
have “public” names, for example names assigned from the Verilog input.) Also note that the design now
contains two instances of a BUF-node. This are artefacts left behind by the proc-command. It is quite
usual to see such artefacts after calling commands that perform changes in the design, as most commands
only care about doing the transformation in the least complicated way, not about cleaning up after them.
The next call to clean (or opt, which includes clean as one of its operations) will clean up this artefacts.
This operation is so common in Yosys scripts that it can simply be abbreviated with the ;; token, which
doubles as separator for commands. Unless one wants to specifically analyze this artefacts left behind some
operations, it is therefore recommended to always call clean before calling show.

In this script we directly call opt as next step, which finally leads us to the 3rd diagram in Fig. 5.1. Here
we see that the opt command not only has removed the artifacts left behind by proc, but also determined
correctly that it can remove the first $mux cell without changing the behavior of the circuit.

E.3. Introduction to the show command 113

YosysHQ Yosys

a

0:0 - 1:1

1:1 - 0:0

1:0 - 3:2

1:0 - 1:0b
c

1:0 - 3:2

1:0 - 1:0d

e 1:0 - 3:2

1:0 - 1:0

f

x

y

A $2
$neg Y 3:0 - 7:4

A $1
$not Y

3:2 - 1:0

1:0 - 3:2

3:0 - 11:8

Fig. 5.2: Output of yosys -p 'proc; opt; show' splice.v

Listing 5.2: splice.v

module splice_demo(a, b, c, d, e, f, x, y);

input [1:0] a, b, c, d, e, f;
output [1:0] x = {a[0], a[1]};

output [11:0] y;
assign {y[11:4], y[1:0], y[3:2]} =

{a, b, -{c, d}, ~{e, f}};

endmodule

E.3.2 Break-out boxes for signal vectors

As has been indicated by the last example, Yosys is can manage signal vectors (aka. multi-bit wires or buses)
as native objects. This provides great advantages when analyzing circuits that operate on wide integers. But
it also introduces some additional complexity when the individual bits of of a signal vector are accessed. The
example show in Listing 5.2 demonstrates how such circuits are visualized by the show command.

The key elements in understanding this circuit diagram are of course the boxes with round corners and rows
labeled <MSB_LEFT>:<LSB_LEFT> - <MSB_RIGHT>:<LSB_RIGHT>. Each of this boxes has one signal per row
on one side and a common signal for all rows on the other side. The <MSB>:<LSB> tuples specify which
bits of the signals are broken out and connected. So the top row of the box connecting the signals a and x
indicates that the bit 0 (i.e. the range 0:0) from signal a is connected to bit 1 (i.e. the range 1:1) of signal x.

Lines connecting such boxes together and lines connecting such boxes to cell ports have a slightly different
look to emphasise that they are not actual signal wires but a necessity of the graphical representation. This
distinction seems like a technicality, until one wants to debug a problem related to the way Yosys internally
represents signal vectors, for example when writing custom Yosys commands.

E.3.3 Gate level netlists

Finally Fig. 5.3 shows two common pitfalls when working with designs mapped to a cell library. The top
figure has two problems: First Yosys did not have access to the cell library when this diagram was generated,
resulting in all cell ports defaulting to being inputs. This is why all ports are drawn on the left side the
cells are awkwardly arranged in a large column. Secondly the two-bit vector y requires breakout-boxes for
its individual bits, resulting in an unnecessary complex diagram.

For the 2nd diagram Yosys has been given a description of the cell library as Verilog file containing blackbox
modules. There are two ways to load cell descriptions into Yosys: First the Verilog file for the cell library
can be passed directly to the show command using the -lib <filename> option. Secondly it is possible to
load cell libraries into the design with the read_verilog -lib <filename> command. The 2nd method has
the great advantage that the library only needs to be loaded once and can then be used in all subsequent
calls to the show command.

In addition to that, the 2nd diagram was generated after splitnet -ports was run on the design. This
command splits all signal vectors into individual signal bits, which is often desirable when looking at gate-
level circuits. The -ports option is required to also split module ports. Per default the command only
operates on interior signals.

114 Appendix E. 011: Interactive design investigation page

YosysHQ Yosys

a

A

B

Y

$g0
NOR

A

Y
$g2
NOT

b A

Y
$g1
NOT

y

1:1 - 0:0

1:1 - 0:0

0:0 - 0:0

A

B

Y

$g3
NOR

A

B

Y

$g4
NOR

$n4

$n5

$n6_1

a

A

B
$g0
NOR Y

A $g2
NOT Y

b

A $g1
NOT Y

y[0]

y[1]

A

B
$g4
NOR Y

A

B
$g3
NOR Y

Fig. 5.3: Effects of splitnets command and of providing a cell library. (The circuit is a half-adder built
from simple CMOS gates.)

E.3. Introduction to the show command 115

YosysHQ Yosys

E.3.4 Miscellaneous notes

Per default the show command outputs a temporary dot file and launches xdot to display it. The options
-format, -viewer and -prefix can be used to change format, viewer and filename prefix. Note that the
pdf and ps format are the only formats that support plotting multiple modules in one run.

In densely connected circuits it is sometimes hard to keep track of the individual signal wires. For this cases
it can be useful to call show with the -colors <integer> argument, which randomly assigns colors to the
nets. The integer (> 0) is used as seed value for the random color assignments. Sometimes it is necessary it
try some values to find an assignment of colors that looks good.

The command help show prints a complete listing of all options supported by the show command.

E.4 Navigating the design

Plotting circuit diagrams for entire modules in the design brings us only helps in simple cases. For complex
modules the generated circuit diagrams are just stupidly big and are no help at all. In such cases one first
has to select the relevant portions of the circuit.

In addition to what to display one also needs to carefully decide when to display it, with respect to the
synthesis flow. In general it is a good idea to troubleshoot a circuit in the earliest state in which a problem
can be reproduced. So if, for example, the internal state before calling the techmap command already fails to
verify, it is better to troubleshoot the coarse-grain version of the circuit before techmap than the gate-level
circuit after techmap.

Note: It is generally recommended to verify the internal state of a design by writing it to a Verilog file
using write_verilog -noexpr and using the simulation models from simlib.v and simcells.v from the
Yosys data directory (as printed by yosys-config --datdir).

E.4.1 Interactive navigation

Listing 5.3: Demonstration of ls and cd using example.v from
Listing 5.1

yosys> ls

1 modules:
example

yosys> cd example

yosys [example]> ls

7 wires:
$0\y[1:0]
addexample.v:5$2_Y
a
b
c
clk

(continues on next page)

116 Appendix E. 011: Interactive design investigation page

YosysHQ Yosys

(continued from previous page)

y

3 cells:
addexample.v:5$2
$procdff$7
$procmux$5

Listing 5.4: Output of dump \$2 using the design from Listing 5.1
and Fig. 5.1

attribute \src "example.v:5"
cell $add addexample.v:5$2

parameter \A_SIGNED 0
parameter \A_WIDTH 1
parameter \B_SIGNED 0
parameter \B_WIDTH 1
parameter \Y_WIDTH 2
connect \A \a
connect \B \b
connect \Y addexample.v:5$2_Y

end

Once the right state within the synthesis flow for debugging the circuit has been identified, it is recommended
to simply add the shell command to the matching place in the synthesis script. This command will stop the
synthesis at the specified moment and go to shell mode, where the user can interactively enter commands.

For most cases, the shell will start with the whole design selected (i.e. when the synthesis script does not
already narrow the selection). The command ls can now be used to create a list of all modules. The
command cd can be used to switch to one of the modules (type cd .. to switch back). Now the ls command
lists the objects within that module. Listing 5.3 demonstrates this using the design from Listing 5.1.

There is a thing to note in Listing 5.3: We can see that the cell names from Fig. 5.1 are just abbreviations
of the actual cell names, namely the part after the last dollar-sign. Most auto-generated names (the ones
starting with a dollar sign) are rather long and contains some additional information on the origin of the
named object. But in most cases those names can simply be abbreviated using the last part.

Usually all interactive work is done with one module selected using the cd command. But it is also possible to
work from the design-context (cd ..). In this case all object names must be prefixed with <module_name>/.
For example a*/b* would refer to all objects whose names start with b from all modules whose names start
with a.

The dump command can be used to print all information about an object. For example dump $2 will print
Listing 5.4. This can for example be useful to determine the names of nets connected to cells, as the
net-names are usually suppressed in the circuit diagram if they are auto-generated.

For the remainder of this document we will assume that the commands are run from module-context and
not design-context.

E.4. Navigating the design 117

YosysHQ Yosys

E.4.2 Working with selections

a
A

B
$2

$add Y

b

$2_Y

Fig. 5.4: Output of show after select $2 or select t:$add (see also Fig. 5.1)

When a module is selected using the cd command, all commands (with a few exceptions, such as the read_
and write_ commands) operate only on the selected module. This can also be useful for synthesis scripts
where different synthesis strategies should be applied to different modules in the design.

But for most interactive work we want to further narrow the set of selected objects. This can be done using
the select command.

For example, if the command select $2 is executed, a subsequent show command will yield the diagram
shown in Fig. 5.4. Note that the nets are now displayed in ellipses. This indicates that they are not selected,
but only shown because the diagram contains a cell that is connected to the net. This of course makes no
difference for the circuit that is shown, but it can be a useful information when manipulating selections.

Objects can not only be selected by their name but also by other properties. For example select t:$add
will select all cells of type $add. In this case this is also yields the diagram shown in Fig. 5.4.

Listing 5.5: Test module for operations on selections

module foobaraddsub(a, b, c, d, fa, fs, ba, bs);
input [7:0] a, b, c, d;
output [7:0] fa, fs, ba, bs;
assign fa = a + (* foo *) b;
assign fs = a - (* foo *) b;
assign ba = c + (* bar *) d;
assign bs = c - (* bar *) d;

endmodule

The output of help select contains a complete syntax reference for matching different properties.

Many commands can operate on explicit selections. For example the command dump t:$add will print
information on all $add cells in the active module. Whenever a command has [selection] as last argument
in its usage help, this means that it will use the engine behind the select command to evaluate additional
arguments and use the resulting selection instead of the selection created by the last select command.

Normally the select command overwrites a previous selection. The commands select -add and select
-del can be used to add or remove objects from the current selection.

The command select -clear can be used to reset the selection to the default, which is a complete selection
of everything in the current module.

118 Appendix E. 011: Interactive design investigation page

YosysHQ Yosys

E.4.3 Operations on selections

Listing 5.6: Another test module for operations on selections

module sumprod(a, b, c, sum, prod);

input [7:0] a, b, c;
output [7:0] sum, prod;

{* sumstuff *}
assign sum = a + b + c;
{* *}

assign prod = a * b * c;

endmodule

a
A

B
$1

$add Y

b

$1_Y

$1_Y
A

B
$2

$add Y

c

sum

Fig. 5.5: Output of show a:sumstuff on Listing 5.6

The select command is actually much more powerful than it might seem on the first glimpse. When it
is called with multiple arguments, each argument is evaluated and pushed separately on a stack. After all
arguments have been processed it simply creates the union of all elements on the stack. So the following
command will select all $add cells and all objects with the foo attribute set:

select t:$add a:foo

(Try this with the design shown in Listing 5.5. Use the select -list command to list the current selection.)

In many cases simply adding more and more stuff to the selection is an ineffective way of selecting the
interesting part of the design. Special arguments can be used to combine the elements on the stack. For

E.4. Navigating the design 119

YosysHQ Yosys

example the %i arguments pops the last two elements from the stack, intersects them, and pushes the result
back on the stack. So the following command will select all $add ``cells that have the ``foo attribute
set:

select t:$add a:foo %i

The listing in Listing 5.6 uses the Yosys non-standard {... *} syntax to set the attribute sumstuff on all
cells generated by the first assign statement. (This works on arbitrary large blocks of Verilog code an can
be used to mark portions of code for analysis.)

Selecting a:sumstuff in this module will yield the circuit diagram shown in Fig. 5.5. As only the cells
themselves are selected, but not the temporary wire $1_Y, the two adders are shown as two disjunct parts.
This can be very useful for global signals like clock and reset signals: just unselect them using a command
such as select -del clk rst and each cell using them will get its own net label.

In this case however we would like to see the cells connected properly. This can be achieved using the %x
action, that broadens the selection, i.e. for each selected wire it selects all cells connected to the wire and
vice versa. So show a:sumstuff %x yields the diagram shown in Fig. 5.6.

a
A

B
$1

$add Y

b

c

A

B
$2

$add Y sum

Fig. 5.6: Output of show a:sumstuff %x on Listing 5.6

E.4.4 Selecting logic cones

Fig. 5.6 shows what is called the input cone of sum, i.e. all cells and signals that are used to generate the
signal sum. The %ci action can be used to select the input cones of all object in the top selection in the stack
maintained by the select command.

As the %x action, this commands broadens the selection by one “step”. But this time the operation only
works against the direction of data flow. That means, wires only select cells via output ports and cells only
select wires via input ports.

Fig. 5.7 show the sequence of diagrams generated by the following commands:

show prod
show prod %ci
show prod %ci %ci
show prod %ci %ci %ci

120 Appendix E. 011: Interactive design investigation page

YosysHQ Yosys

When selecting many levels of logic, repeating %ci over and over again can be a bit dull. So there is a
shortcut for that: the number of iterations can be appended to the action. So for example the action %ci3
is identical to performing the %ci action three times.

The action %ci* performs the %ci action over and over again until it has no effect anymore.

prod

prod

$3_Y
A

B
$4

$mul Y

c

c

A

B
$4

$mul Y prod

$3_Y

c

A

B
$4

$mul Y prod

a
A

B
$3

$mul Y

b

Fig. 5.7: Objects selected by select prod \%ci...

In most cases there are certain cell types and/or ports that should not be considered for the %ci action, or
we only want to follow certain cell types and/or ports. This can be achieved using additional patterns that
can be appended to the %ci action.

Lets consider the design from Listing 5.7. It serves no purpose other than being a non-trivial circuit for
demonstrating some of the advanced Yosys features. We synthesize the circuit using proc; opt; memory;
opt and change to the memdemo module with cd memdemo. If we type show now we see the diagram shown
in Fig. 5.8.

Listing 5.7: Demo circuit for demonstrating some advanced Yosys
features

module memdemo(clk, d, y);

input clk;
input [3:0] d;
output reg [3:0] y;

(continues on next page)

E.4. Navigating the design 121

YosysHQ Yosys

(continued from previous page)

integer i;
reg [1:0] s1, s2;
reg [3:0] mem [0:3];

always @(posedge clk) begin
for (i = 0; i < 4; i = i+1)

mem[i] <= mem[(i+1) % 4] + mem[(i+2) % 4];
{ s2, s1 } = d ? { s1, s2 } ^ d : 4'b0;
mem[s1] <= d;
y <= mem[s2];

end

endmodule

clk

CLK

D
$66
$dff Q

CLK

D
$68
$dff Q

CLK

D
$70
$dff Q

CLK

D
$72
$dff Q

CLK

D
$59
$dff Q

CLK

D
$63
$dff Q

CLK

D
$64
$dff Q

d

A

B

S

$147
$mux Y

A

B

S

$177
$mux Y

A

B

S

$207
$mux Y

A

B

S

$237
$mux Y

A $39
$reduce_bool Y

A

B
$38
$xor Y

mem[0]

A

B
$34
$add Y

A

B
$37
$add Y

A

B

S

$113
$mux Y

mem[1]

A

B
$28
$add Y

mem[2]

A

B
$31
$add Y

A

B

S

$116
$mux Y

mem[3]

s1

1:0 - 3:2

1:0 - 1:0

s2

y

A

B

S

$110
$mux Y

1:1 - 0:0

0:0 - 0:0

0:0 - 0:0

1'1

A

B
$145
$and Y

1'1

A

B
$175
$and Y

1'1

A

B
$205
$and Y

1'1

A

B
$235
$and Y

2'00 A

B
$143
$eq Y

2'01 A

B
$173
$eq Y

2'10 A

B
$203
$eq Y

2'11 A

B
$233
$eq Y

A

B

S

$40
$mux Y

4'0000

3:2 - 1:0

1:0 - 1:0

Fig. 5.8: Complete circuit diagram for the design shown in Listing 5.7

But maybe we are only interested in the tree of multiplexers that select the output value. In order to get
there, we would start by just showing the output signal and its immediate predecessors:

show y %ci2

From this we would learn that y is driven by a $dff cell, that y is connected to the output port Q, that
the clk signal goes into the CLK input port of the cell, and that the data comes from a auto-generated wire
into the input D of the flip-flop cell.

As we are not interested in the clock signal we add an additional pattern to the %ci action, that tells it to
only follow ports Q and D of $dff cells:

show y %ci2:+$dff[Q,D]

To add a pattern we add a colon followed by the pattern to the %ci action. The pattern it self starts with
- or +, indicating if it is an include or exclude pattern, followed by an optional comma separated list of cell
types, followed by an optional comma separated list of port names in square brackets.

Since we know that the only cell considered in this case is a $dff cell, we could as well only specify the port
names:

show y %ci2:+[Q,D]

Or we could decide to tell the %ci action to not follow the CLK input:

122 Appendix E. 011: Interactive design investigation page

YosysHQ Yosys

show y %ci2:-[CLK]

mem[0]

A

B

S

$113
$mux Y

mem[1]

mem[2]
A

B

S

$116
$mux Y

mem[3]

y

$0\s2[1:0] [1]

A

B

S

$110
$mux Y

CLK

D
$64
$dff Q

$0\s2[1:0] [0]

$0\s2[1:0] [0]

clk

Fig. 5.9: Output of show y \%ci2:+\$dff[Q,D] \%ci*:-\$mux[S]:-\$dff

Next we would investigate the next logic level by adding another %ci2 to the command:

show y %ci2:-[CLK] %ci2

From this we would learn that the next cell is a $mux cell and we would add additional pattern to narrow
the selection on the path we are interested. In the end we would end up with a command such as

show y %ci2:+$dff[Q,D] %ci*:-$mux[S]:-$dff

in which the first %ci jumps over the initial d-type flip-flop and the 2nd action selects the entire input cone
without going over multiplexer select inputs and flip-flop cells. The diagram produces by this command is
shown in Fig. 5.9.

Similar to %ci exists an action %co to select output cones that accepts the same syntax for pattern and
repetition. The %x action mentioned previously also accepts this advanced syntax.

This actions for traversing the circuit graph, combined with the actions for boolean operations such as
intersection (%i) and difference (%d) are powerful tools for extracting the relevant portions of the circuit
under investigation.

See help select for a complete list of actions available in selections.

E.4. Navigating the design 123

YosysHQ Yosys

E.4.5 Storing and recalling selections

The current selection can be stored in memory with the command select -set <name>. It can later be
recalled using select @<name>. In fact, the @<name> expression pushes the stored selection on the stack
maintained by the select command. So for example

select @foo @bar %i

will select the intersection between the stored selections foo and bar.

In larger investigation efforts it is highly recommended to maintain a script that sets up relevant selections,
so they can easily be recalled, for example when Yosys needs to be re-run after a design or source code
change.

The history command can be used to list all recent interactive commands. This feature can be useful for
creating such a script from the commands used in an interactive session.

E.5 Advanced investigation techniques

When working with very large modules, it is often not enough to just select the interesting part of the module.
Instead it can be useful to extract the interesting part of the circuit into a separate module. This can for
example be useful if one wants to run a series of synthesis commands on the critical part of the module and
wants to carefully read all the debug output created by the commands in order to spot a problem. This kind
of troubleshooting is much easier if the circuit under investigation is encapsulated in a separate module.

Listing 5.8 shows how the submod command can be used to split the circuit from Listing 5.7 and Fig. 5.8
into its components. The -name option is used to specify the name of the new module and also the name of
the new cell in the current module.

Listing 5.8: The circuit from Listing 5.7 and Fig. 5.8 broken up
using submod

select -set outstage y %ci2:+$dff[Q,D] %ci*:-$mux[S]:-$dff
select -set selstage y %ci2:+$dff[Q,D] %ci*:-$dff @outstage %d
select -set scramble mem* %ci2 %ci*:-$dff mem* %d @selstage %d
submod -name scramble @scramble
submod -name outstage @outstage
submod -name selstage @selstage

E.5.1 Evaluation of combinatorial circuits

The eval command can be used to evaluate combinatorial circuits. For example (see Listing 5.8 for the
circuit diagram of selstage):

yosys [selstage]> eval -set s2,s1 4'b1001 -set d 4'hc -show n2 -show n1

1. Executing EVAL pass (evaluate the circuit given an input).
Full command line: eval -set s2,s1 4'b1001 -set d 4'hc -show n2 -show n1
Eval result: \n2 = 2'10.
Eval result: \n1 = 2'10.

So the -set option is used to set input values and the -show option is used to specify the nets to evaluate.
If no -show option is specified, all selected output ports are used per default.

124 Appendix E. 011: Interactive design investigation page

YosysHQ Yosys

clk

CLK

D
$59
$dff Q

CLK

D
$63
$dff Q

clk

mem[0]

mem[1]

mem[2]

mem[3]

n1

outstage
outstage y

clk

d

n1

scramble
scramble

mem[0]

mem[1]

mem[2]

mem[3]

d

d

s1

s2

selstage
selstage

n1

n2 mem[0]

mem[1]

mem[2]

mem[3]

s1 s2

y

memdemo

clk

CLK

D
$66
$dff Q

CLK

D
$68
$dff Q

CLK

D
$70
$dff Q

CLK

D
$72
$dff Q

d

A

B

S

$147
$mux Y

A

B

S

$177
$mux Y

A

B

S

$207
$mux Y

A

B

S

$237
$mux Y

mem[0]

A

B
$34
$add Y

A

B
$37
$add Ymem[1]

A

B
$28
$add Y

mem[2]

A

B
$31
$add Y

mem[3]

n1

A

B
$143
$eq Y

A

B
$173
$eq Y

A

B
$203
$eq Y

A

B
$233
$eq Y

1'1

A

B
$145
$and Y

1'1

A

B
$175
$and Y

1'1

A

B
$205
$and Y

1'1

A

B
$235
$and Y

2'00

2'01

2'10

2'11

scramble

clk

CLK

D
$64
$dff Q

mem[0]

A

B

S

$113
$mux Y

mem[1]

mem[2]

A

B

S

$116
$mux Ymem[3]

n1

1:1 - 0:0

0:0 - 0:0

0:0 - 0:0

y
A

B

S

$110
$mux Y

outstage

d A $39
$reduce_bool Y

A

B
$38
$xor Y

n1

n2
s1

1:0 - 3:2

1:0 - 1:0
s2

A

B

S

$40
$mux Y

4'0000

3:2 - 1:0

1:0 - 1:0

selstage

E.5. Advanced investigation techniques 125

YosysHQ Yosys

If a necessary input value is not given, an error is produced. The option -set-undef can be used to instead
set all unspecified input nets to undef (x).

The -table option can be used to create a truth table. For example:

yosys [selstage]> eval -set-undef -set d[3:1] 0 -table s1,d[0]

10. Executing EVAL pass (evaluate the circuit given an input).
Full command line: eval -set-undef -set d[3:1] 0 -table s1,d[0]

\s1 \d [0] | \n1 \n2
---- ------ | ---- ----
2'00 1'0 | 2'00 2'00
2'00 1'1 | 2'xx 2'00
2'01 1'0 | 2'00 2'00
2'01 1'1 | 2'xx 2'01
2'10 1'0 | 2'00 2'00
2'10 1'1 | 2'xx 2'10
2'11 1'0 | 2'00 2'00
2'11 1'1 | 2'xx 2'11

Assumed undef (x) value for the following signals: \s2

Note that the eval command (as well as the sat command discussed in the next sections) does only operate
on flattened modules. It can not analyze signals that are passed through design hierarchy levels. So the
flatten command must be used on modules that instantiate other modules before this commands can be
applied.

E.5.2 Solving combinatorial SAT problems

Listing 5.9: A simple miter circuit for testing if a number is prime.
But it has a problem (see main text and Listing 5.10).

module primetest(p, a, b, ok);
input [15:0] p, a, b;
output ok = p != a*b || a == 1 || b == 1;
endmodule

Listing 5.10: Experiments with the miter circuit from Listing 5.9.
The first attempt of proving that 31 is prime failed because the
SAT solver found a creative way of factorizing 31 using integer
overflow.

yosys [primetest]> sat -prove ok 1 -set p 31

8. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -prove ok 1 -set p 31

Setting up SAT problem:
Import set-constraint: \p = 16'0000000000011111
Final constraint equation: \p = 16'0000000000011111
Imported 6 cells to SAT database.
Import proof-constraint: \ok = 1'1

(continues on next page)

126 Appendix E. 011: Interactive design investigation page

YosysHQ Yosys

(continued from previous page)

Final proof equation: \ok = 1'1

Solving problem with 2790 variables and 8241 clauses..
SAT proof finished - model found: FAIL!

______ ___ ___ _ _ _ _
(_____ \ / __) / __) (_) | | | |
_____))___ ___ ___ _| |__ _| |__ _____ _| | _____ __| | |
| ____/ ___) _ \ / _ (_ __) (_ __|____ | | || ___ |/ _ |_|
| | | | | |_| | |_| || | | | / ___ | | || ____((_| |_
|_| |_| ___/ ___/ |_| |_| _____|_|_)_____)____|_|

Signal Name Dec Hex Bin
-------------------- ---------- ---------- ---------------------
\a 15029 3ab5 0011101010110101
\b 4099 1003 0001000000000011
\ok 0 0 0
\p 31 1f 0000000000011111

yosys [primetest]> sat -prove ok 1 -set p 31 -set a[15:8],b[15:8] 0

9. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -prove ok 1 -set p 31 -set a[15:8],b[15:8] 0

Setting up SAT problem:
Import set-constraint: \p = 16'0000000000011111
Import set-constraint: { \a [15:8] \b [15:8] } = 16'0000000000000000
Final constraint equation: { \a [15:8] \b [15:8] \p } = { 16'0000000000000000 16

→˓'0000000000011111 }
Imported 6 cells to SAT database.
Import proof-constraint: \ok = 1'1
Final proof equation: \ok = 1'1

Solving problem with 2790 variables and 8257 clauses..
SAT proof finished - no model found: SUCCESS!

/$$$$$$ /$$$$$$$$ /$$$$$$$
/$$__ $$ | $$_____/ | $$__ $$
| $$ \ $$ | $$ | $$ \ $$
| $$ | $$ | $$$$$ | $$ | $$
| $$ | $$ | $$__/ | $$ | $$
| $$/$$ $$ | $$ | $$ | $$
| $$$$$$/ /$$| $$$$$$$$ /$$| $$$$$$$//$$
____ $$$|__/|________/|__/|_______/|__/

__/

Often the opposite of the eval command is needed, i.e. the circuits output is given and we want to find the
matching input signals. For small circuits with only a few input bits this can be accomplished by trying all
possible input combinations, as it is done by the eval -table command. For larger circuits however, Yosys
provides the sat command that uses a SAT solver, MiniSAT, to solve this kind of problems.

The sat command works very similar to the eval command. The main difference is that it is now also

E.5. Advanced investigation techniques 127

http://en.wikipedia.org/wiki/Circuit_satisfiability
http://minisat.se/

YosysHQ Yosys

possible to set output values and find the corresponding input values. For Example:

yosys [selstage]> sat -show s1,s2,d -set s1 s2 -set n2,n1 4'b1001

11. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -show s1,s2,d -set s1 s2 -set n2,n1 4'b1001

Setting up SAT problem:
Import set-constraint: \s1 = \s2
Import set-constraint: { \n2 \n1 } = 4'1001
Final constraint equation: { \n2 \n1 \s1 } = { 4'1001 \s2 }
Imported 3 cells to SAT database.
Import show expression: { \s1 \s2 \d }

Solving problem with 81 variables and 207 clauses..
SAT solving finished - model found:

Signal Name Dec Hex Bin
-------------------- ---------- ---------- ---------------
\d 9 9 1001
\s1 0 0 00
\s2 0 0 00

Note that the sat command supports signal names in both arguments to the -set option. In the above
example we used -set s1 s2 to constraint s1 and s2 to be equal. When more complex constraints are
needed, a wrapper circuit must be constructed that checks the constraints and signals if the constraint was
met using an extra output port, which then can be forced to a value using the -set option. (Such a circuit
that contains the circuit under test plus additional constraint checking circuitry is called a miter circuit.)

Listing 5.9 shows a miter circuit that is supposed to be used as a prime number test. If ok is 1 for all input
values a and b for a given p, then p is prime, or at least that is the idea.

The Yosys shell session shown in Listing 5.10 demonstrates that SAT solvers can even find the unexpected
solutions to a problem: Using integer overflow there actually is a way of “factorizing” 31. The clean solution
would of course be to perform the test in 32 bits, for example by replacing p != a*b in the miter with p !=
{16'd0,a}b, or by using a temporary variable for the 32 bit product a*b. But as 31 fits well into 8 bits (and
as the purpose of this document is to show off Yosys features) we can also simply force the upper 8 bits of
a and b to zero for the sat call, as is done in the second command in Listing 5.10 (line 31).

The -prove option used in this example works similar to -set, but tries to find a case in which the two
arguments are not equal. If such a case is not found, the property is proven to hold for all inputs that satisfy
the other constraints.

It might be worth noting, that SAT solvers are not particularly efficient at factorizing large numbers. But
if a small factorization problem occurs as part of a larger circuit problem, the Yosys SAT solver is perfectly
capable of solving it.

128 Appendix E. 011: Interactive design investigation page

YosysHQ Yosys

E.5.3 Solving sequential SAT problems

Listing 5.11: Solving a sequential SAT problem in the memdemo
module from Listing 5.7.

yosys [memdemo]> sat -seq 6 -show y -show d -set-init-undef \
-max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3

6. Executing SAT pass (solving SAT problems in the circuit).
Full command line: sat -seq 6 -show y -show d -set-init-undef

-max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3

Setting up time step 1:
Final constraint equation: { } = { }
Imported 29 cells to SAT database.

Setting up time step 2:
Final constraint equation: { } = { }
Imported 29 cells to SAT database.

Setting up time step 3:
Final constraint equation: { } = { }
Imported 29 cells to SAT database.

Setting up time step 4:
Import set-constraint for timestep: \y = 4'0001
Final constraint equation: \y = 4'0001
Imported 29 cells to SAT database.

Setting up time step 5:
Import set-constraint for timestep: \y = 4'0010
Final constraint equation: \y = 4'0010
Imported 29 cells to SAT database.

Setting up time step 6:
Import set-constraint for timestep: \y = 4'0011
Final constraint equation: \y = 4'0011
Imported 29 cells to SAT database.

Setting up initial state:
Final constraint equation: { \y \s2 \s1 \mem[3] \mem[2] \mem[1]

\mem[0] } = 24'xxxxxxxxxxxxxxxxxxxxxxxx

Import show expression: \y
Import show expression: \d

Solving problem with 10322 variables and 27881 clauses..
SAT model found. maximizing number of undefs.
SAT solving finished - model found:

Time Signal Name Dec Hex Bin
---- -------------------- ---------- ---------- ---------------
init \mem[0] -- -- xxxx

(continues on next page)

E.5. Advanced investigation techniques 129

YosysHQ Yosys

(continued from previous page)

init \mem[1] -- -- xxxx
init \mem[2] -- -- xxxx
init \mem[3] -- -- xxxx
init \s1 -- -- xx
init \s2 -- -- xx
init \y -- -- xxxx
---- -------------------- ---------- ---------- ---------------

1 \d 0 0 0000
1 \y -- -- xxxx

---- -------------------- ---------- ---------- ---------------
2 \d 1 1 0001
2 \y -- -- xxxx

---- -------------------- ---------- ---------- ---------------
3 \d 2 2 0010
3 \y 0 0 0000

---- -------------------- ---------- ---------- ---------------
4 \d 3 3 0011
4 \y 1 1 0001

---- -------------------- ---------- ---------- ---------------
5 \d -- -- 001x
5 \y 2 2 0010

---- -------------------- ---------- ---------- ---------------
6 \d -- -- xxxx
6 \y 3 3 0011

The SAT solver functionality in Yosys can not only be used to solve combinatorial problems, but can also
solve sequential problems. Let’s consider the entire memdemo module from Listing 5.7 and suppose we want
to know which sequence of input values for d will cause the output y to produce the sequence 1, 2, 3 from
any initial state. Listing 5.11 show the solution to this question, as produced by the following command:

sat -seq 6 -show y -show d -set-init-undef \
-max_undef -set-at 4 y 1 -set-at 5 y 2 -set-at 6 y 3

The -seq 6 option instructs the sat command to solve a sequential problem in 6 time steps. (Experiments
with lower number of steps have show that at least 3 cycles are necessary to bring the circuit in a state from
which the sequence 1, 2, 3 can be produced.)

The -set-init-undef option tells the sat command to initialize all registers to the undef (x) state. The
way the x state is treated in Verilog will ensure that the solution will work for any initial state.

The -max_undef option instructs the sat command to find a solution with a maximum number of undefs.
This way we can see clearly which inputs bits are relevant to the solution.

Finally the three -set-at options add constraints for the y signal to play the 1, 2, 3 sequence, starting with
time step 4.

It is not surprising that the solution sets d = 0 in the first step, as this is the only way of setting the s1 and
s2 registers to a known value. The input values for the other steps are a bit harder to work out manually,
but the SAT solver finds the correct solution in an instant.

There is much more to write about the sat command. For example, there is a set of options that can be
used to performs sequential proofs using temporal induction [EenSorensson03]. The command help sat can
be used to print a list of all options with short descriptions of their functions.

130 Appendix E. 011: Interactive design investigation page

YosysHQ Yosys

E.6 Conclusion

Yosys provides a wide range of functions to analyze and investigate designs. For many cases it is sufficient
to simply display circuit diagrams, maybe use some additional commands to narrow the scope of the circuit
diagrams to the interesting parts of the circuit. But some cases require more than that. For this applications
Yosys provides commands that can be used to further inspect the behavior of the circuit, either by evaluating
which output values are generated from certain input values (eval) or by evaluation which input values and
initial conditions can result in a certain behavior at the outputs (sat). The SAT command can even be used
to prove (or disprove) theorems regarding the circuit, in more advanced cases with the additional help of a
miter circuit.

This features can be powerful tools for the circuit designer using Yosys as a utility for building circuits and
the software developer using Yosys as a framework for new algorithms alike.

E.6. Conclusion 131

YosysHQ Yosys

132 Appendix E. 011: Interactive design investigation page

APPENDIX

F

012: CONVERTING VERILOG TO BTOR PAGE

F.1 Installation

Yosys written in C++ (using features from C++11) and is tested on modern Linux. It should compile fine
on most UNIX systems with a C++11 compiler. The README file contains useful information on building
Yosys and its prerequisites.

Yosys is a large and feature-rich program with some dependencies. For this work, we may deactivate other
extra features such as TCL and ABC support in the Makefile.

This Application Note is based on Yosys GIT Rev. 082550f from 2015-04-04.

F.2 Quick start

We assume that the Verilog design is synthesizable and we also assume that the design does not have multi-
dimensional memories. As BTOR implicitly initializes registers to zero value and memories stay uninitialized,
we assume that the Verilog design does not contain initial blocks. For more details about the BTOR format,
please refer to [BBL08].

We provide a shell script verilog2btor.sh which can be used to convert a Verilog design to BTOR. The
script can be found in the backends/btor directory. The following example shows its usage:

verilog2btor.sh fsm.v fsm.btor test

The script verilog2btor.sh takes three parameters. In the above example, the first parameter fsm.v is
the input design, the second parameter fsm.btor is the file name of BTOR output, and the third parameter
test is the name of top module in the design.

To specify the properties (that need to be checked), we have two options:

• We can use the Verilog assert statement in the procedural block or module body of the Verilog design,
as shown in Listing 6.1. This is the preferred option.

• We can use a single-bit output wire, whose name starts with safety. The value of this output wire
needs to be driven low when the property is met, i.e. the solver will try to find a model that makes
the safety pin go high. This is demonstrated in Listing 6.2.

Listing 6.1: Specifying property in Verilog design with assert

module test(input clk, input rst, output y);

reg [2:0] state;
(continues on next page)

133

https://github.com/YosysHQ/yosys

YosysHQ Yosys

(continued from previous page)

always @(posedge clk) begin
if (rst || state == 3) begin
state <= 0;

end else begin
assert(state < 3);
state <= state + 1;

end
end

assign y = state[2];

assert property (y !== 1'b1);

endmodule

Listing 6.2: Specifying property in Verilog design with output wire

module test(input clk, input rst,
output y, output safety1);

reg [2:0] state;

always @(posedge clk) begin
if (rst || state == 3)
state <= 0;

else
state <= state + 1;

end

assign y = state[2];

assign safety1 = !(y !== 1'b1);

endmodule

We can run Boolector 1.4.11 on the generated BTOR file:

$ boolector fsm.btor
unsat

We can also use nuXmv, but on BTOR designs it does not support memories yet. With the next release of
nuXmv, we will be also able to verify designs with memories.

1 Newer version of Boolector do not support sequential models. Boolector 1.4.1 can be built with picosat-951. Newer versions
of picosat have an incompatible API.

134 Appendix F. 012: Converting Verilog to BTOR page

http://fmv.jku.at/boolector/
https://es-static.fbk.eu/tools/nuxmv/index.php

YosysHQ Yosys

F.3 Detailed flow

Yosys is able to synthesize Verilog designs up to the gate level. We are interested in keeping registers and
memories when synthesizing the design. For this purpose, we describe a customized Yosys synthesis flow, that
is also provided by the verilog2btor.sh script. Listing 6.3 shows the Yosys commands that are executed
by verilog2btor.sh.

Listing 6.3: Synthesis Flow for BTOR with memories

read_verilog -sv $1;
hierarchy -top $3; hierarchy -libdir $DIR;
hierarchy -check;
proc; opt;
opt_expr -mux_undef; opt;
rename -hide;;;
splice; opt;
memory_dff -wr_only; memory_collect;;
flatten;;
memory_unpack;
splitnets -driver;
setundef -zero -undriven;
opt;;;
write_btor $2;

Here is short description of what is happening in the script line by line:

1. Reading the input file.

2. Setting the top module in the hierarchy and trying to read automatically the files which are given as
include in the file read in first line.

3. Checking the design hierarchy.

4. Converting processes to multiplexers (muxs) and flip-flops.

5. Removing undef signals from muxs.

6. Hiding all signal names that are not used as module ports.

7. Explicit type conversion, by introducing slice and concat cells in the circuit.

8. Converting write memories to synchronous memories, and collecting the memories to multi-port mem-
ories.

9. Flattening the design to get only one module.

10. Separating read and write memories.

11. Splitting the signals that are partially assigned

12. Setting undef to zero value.

13. Final optimization pass.

14. Writing BTOR file.

For detailed description of the commands mentioned above, please refer to the Yosys documentation, or run
yosys -h <command_name>.

The script presented earlier can be easily modified to have a BTOR file that does not contain memories.
This is done by removing the line number 8 and 10, and introduces a new command memory at line number
8. Listing 6.4 shows the modified Yosys script file:

F.3. Detailed flow 135

YosysHQ Yosys

Listing 6.4: Synthesis Flow for BTOR without memories

read_verilog -sv $1;
hierarchy -top $3; hierarchy -libdir $DIR;
hierarchy -check;
proc; opt;
opt_expr -mux_undef; opt;
rename -hide;;;
splice; opt;
memory;;
flatten;;
splitnets -driver;
setundef -zero -undriven;
opt;;;
write_btor $2;

F.4 Example

Here is an example Verilog design that we want to convert to BTOR:

Listing 6.5: Example - Verilog Design

module array(input clk);

reg [7:0] counter;
reg [7:0] mem [7:0];

always @(posedge clk) begin
counter <= counter + 8'd1;
mem[counter] <= counter;

end

assert property (!(counter > 8'd0) ||
mem[counter - 8'd1] == counter - 8'd1);

endmodule

The generated BTOR file that contain memories, using the script shown in Listing 6.6:

Listing 6.6: Example - Converted BTOR with memory

1 var 1 clk
2 array 8 3
3 var 8 $auto$rename.cc:150:execute$20
4 const 8 00000001
5 sub 8 3 4
6 slice 3 5 2 0
7 read 8 2 6
8 slice 3 3 2 0
9 add 8 3 4
10 const 8 00000000

(continues on next page)

136 Appendix F. 012: Converting Verilog to BTOR page

YosysHQ Yosys

(continued from previous page)

11 ugt 1 3 10
12 not 1 11
13 const 8 11111111
14 slice 1 13 0 0
15 one 1
16 eq 1 1 15
17 and 1 16 14
18 write 8 3 2 8 3
19 acond 8 3 17 18 2
20 anext 8 3 2 19
21 eq 1 7 5
22 or 1 12 21
23 const 1 1
24 one 1
25 eq 1 23 24
26 cond 1 25 22 24
27 root 1 -26
28 cond 8 1 9 3
29 next 8 3 28

And the BTOR file obtained by the script shown in Listing 6.7, which expands the memory into individual
elements:

Listing 6.7: Example - Converted BTOR with memory

1 var 1 clk
2 var 8 mem[0]
3 var 8 $auto$rename.cc:150:execute$20
4 slice 3 3 2 0
5 slice 1 4 0 0
6 not 1 5
7 slice 1 4 1 1
8 not 1 7
9 slice 1 4 2 2
10 not 1 9
11 and 1 8 10
12 and 1 6 11
13 cond 8 12 3 2
14 cond 8 1 13 2
15 next 8 2 14
16 const 8 00000001
17 add 8 3 16
18 const 8 00000000
19 ugt 1 3 18
20 not 1 19
21 var 8 mem[2]
22 and 1 7 10
23 and 1 6 22
24 cond 8 23 3 21
25 cond 8 1 24 21
26 next 8 21 25
27 sub 8 3 16

(continues on next page)

F.4. Example 137

YosysHQ Yosys

(continued from previous page)

...

54 cond 1 53 50 52
55 root 1 -54

...

77 cond 8 76 3 44
78 cond 8 1 77 44
79 next 8 44 78

F.5 Limitations

BTOR does not support initialization of memories and registers, i.e. they are implicitly initialized to value
zero, so the initial block for memories need to be removed when converting to BTOR. It should also be kept
in consideration that BTOR does not support the x or z values of Verilog.

Another thing to bear in mind is that Yosys will convert multi-dimensional memories to one-dimensional
memories and address decoders. Therefore out-of-bounds memory accesses can yield unexpected results.

F.6 Conclusion

Using the described flow, we can use Yosys to generate word-level verification benchmarks with or without
memories from Verilog designs.

138 Appendix F. 012: Converting Verilog to BTOR page

APPENDIX

G

COMMAND LINE REFERENCE

G.1 abc - use ABC for technology mapping

abc [options] [selection]

This pass uses the ABC tool [1] for technology mapping of yosys's internal gate
library to a target architecture.

-exe <command>
use the specified command instead of "<yosys-bindir>/yosys-abc" to execute ABC.
This can e.g. be used to call a specific version of ABC or a wrapper.

-script <file>
use the specified ABC script file instead of the default script.

if <file> starts with a plus sign (+), then the rest of the filename
string is interpreted as the command string to be passed to ABC. The
leading plus sign is removed and all commas (,) in the string are
replaced with blanks before the string is passed to ABC.

if no -script parameter is given, the following scripts are used:

for -liberty/-genlib without -constr:
strash; &get -n; &fraig -x; &put; scorr; dc2; dretime; strash;

&get -n; &dch -f; &nf {D}; &put

for -liberty/-genlib with -constr:
strash; &get -n; &fraig -x; &put; scorr; dc2; dretime; strash;

&get -n; &dch -f; &nf {D}; &put; buffer; upsize {D};
dnsize {D}; stime -p

for -lut/-luts (only one LUT size):
strash; &get -n; &fraig -x; &put; scorr; dc2; dretime; strash;

dch -f; if; mfs2; lutpack {S}

for -lut/-luts (different LUT sizes):
strash; &get -n; &fraig -x; &put; scorr; dc2; dretime; strash;

dch -f; if; mfs2

for -sop:
(continues on next page)

139

YosysHQ Yosys

(continued from previous page)

strash; &get -n; &fraig -x; &put; scorr; dc2; dretime; strash;
dch -f; cover {I} {P}

otherwise:
strash; &get -n; &fraig -x; &put; scorr; dc2; dretime; strash;

&get -n; &dch -f; &nf {D}; &put

-fast
use different default scripts that are slightly faster (at the cost
of output quality):

for -liberty/-genlib without -constr:
strash; dretime; map {D}

for -liberty/-genlib with -constr:
strash; dretime; map {D}; buffer; upsize {D}; dnsize {D};

stime -p

for -lut/-luts:
strash; dretime; if

for -sop:
strash; dretime; cover {I} {P}

otherwise:
strash; dretime; map

-liberty <file>
generate netlists for the specified cell library (using the liberty
file format).

-dont_use <cell_name>
generate netlists for the specified cell library (using the liberty
file format).

-genlib <file>
generate netlists for the specified cell library (using the SIS Genlib
file format).

-constr <file>
pass this file with timing constraints to ABC.
use with -liberty/-genlib.

a constr file contains two lines:
set_driving_cell <cell_name>
set_load <floating_point_number>

the set_driving_cell statement defines which cell type is assumed to
drive the primary inputs and the set_load statement sets the load in
femtofarads for each primary output.

-D <picoseconds>
(continues on next page)

140 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

set delay target. the string {D} in the default scripts above is
replaced by this option when used, and an empty string otherwise.
this also replaces 'dretime' with 'dretime; retime -o {D}' in the
default scripts above.

-I <num>
maximum number of SOP inputs.
(replaces {I} in the default scripts above)

-P <num>
maximum number of SOP products.
(replaces {P} in the default scripts above)

-S <num>
maximum number of LUT inputs shared.
(replaces {S} in the default scripts above, default: -S 1)

-lut <width>
generate netlist using luts of (max) the specified width.

-lut <w1>:<w2>
generate netlist using luts of (max) the specified width <w2>. All
luts with width <= <w1> have constant cost. for luts larger than <w1>
the area cost doubles with each additional input bit. the delay cost
is still constant for all lut widths.

-luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..
generate netlist using luts. Use the specified costs for luts with 1,
2, 3, .. inputs.

-sop
map to sum-of-product cells and inverters

-g type1,type2,...
Map to the specified list of gate types. Supported gates types are:

AND, NAND, OR, NOR, XOR, XNOR, ANDNOT, ORNOT, MUX,
NMUX, AOI3, OAI3, AOI4, OAI4.

(The NOT gate is always added to this list automatically.)

The following aliases can be used to reference common sets of gate
types:
simple: AND OR XOR MUX
cmos2: NAND NOR
cmos3: NAND NOR AOI3 OAI3
cmos4: NAND NOR AOI3 OAI3 AOI4 OAI4
cmos: NAND NOR AOI3 OAI3 AOI4 OAI4 NMUX MUX XOR XNOR
gates: AND NAND OR NOR XOR XNOR ANDNOT ORNOT
aig: AND NAND OR NOR ANDNOT ORNOT

The alias 'all' represent the full set of all gate types.

Prefix a gate type with a '-' to remove it from the list. For example
(continues on next page)

G.1. abc - use ABC for technology mapping 141

YosysHQ Yosys

(continued from previous page)

the arguments 'AND,OR,XOR' and 'simple,-MUX' are equivalent.

The default is 'all,-NMUX,-AOI3,-OAI3,-AOI4,-OAI4'.

-dff
also pass $_DFF_?_ and $_DFFE_??_ cells through ABC. modules with many
clock domains are automatically partitioned in clock domains and each
domain is passed through ABC independently.

-clk [!]<clock-signal-name>[,[!]<enable-signal-name>]
use only the specified clock domain. this is like -dff, but only FF
cells that belong to the specified clock domain are used.

-keepff
set the "keep" attribute on flip-flop output wires. (and thus preserve
them, for example for equivalence checking.)

-nocleanup
when this option is used, the temporary files created by this pass
are not removed. this is useful for debugging.

-showtmp
print the temp dir name in log. usually this is suppressed so that the
command output is identical across runs.

-markgroups
set a 'abcgroup' attribute on all objects created by ABC. The value of
this attribute is a unique integer for each ABC process started. This
is useful for debugging the partitioning of clock domains.

-dress
run the 'dress' command after all other ABC commands. This aims to
preserve naming by an equivalence check between the original and
post-ABC netlists (experimental).

When no target cell library is specified the Yosys standard cell library is
loaded into ABC before the ABC script is executed.

Note that this is a logic optimization pass within Yosys that is calling ABC
internally. This is not going to "run ABC on your design". It will instead run
ABC on logic snippets extracted from your design. You will not get any useful
output when passing an ABC script that writes a file. Instead write your full
design as BLIF file with write_blif and then load that into ABC externally if
you want to use ABC to convert your design into another format.

[1] http://www.eecs.berkeley.edu/~alanmi/abc/

142 Appendix G. Command line reference

YosysHQ Yosys

G.2 abc9 - use ABC9 for technology mapping

abc9 [options] [selection]

This script pass performs a sequence of commands to facilitate the use of the
ABC tool [1] for technology mapping of the current design to a target FPGA
architecture. Only fully-selected modules are supported.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-exe <command>
use the specified command instead of "<yosys-bindir>/yosys-abc" to execute ABC.
This can e.g. be used to call a specific version of ABC or a wrapper.

-script <file>
use the specified ABC script file instead of the default script.

if <file> starts with a plus sign (+), then the rest of the filename
string is interpreted as the command string to be passed to ABC. The
leading plus sign is removed and all commas (,) in the string are
replaced with blanks before the string is passed to ABC.

if no -script parameter is given, the following scripts are used:
&scorr; &sweep; &dc2; &dch -f; &ps; &if {C} {W} {D} {R} -v; &mfs

-fast
use different default scripts that are slightly faster (at the cost
of output quality):
&if {C} {W} {D} {R} -v

-D <picoseconds>
set delay target. the string {D} in the default scripts above is
replaced by this option when used, and an empty string otherwise
(indicating best possible delay).

-lut <width>
generate netlist using luts of (max) the specified width.

-lut <w1>:<w2>
generate netlist using luts of (max) the specified width <w2>. All
luts with width <= <w1> have constant cost. for luts larger than <w1>
the area cost doubles with each additional input bit. the delay cost
is still constant for all lut widths.

-lut <file>
pass this file with lut library to ABC.

-luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..
generate netlist using luts. Use the specified costs for luts with 1,

(continues on next page)

G.2. abc9 - use ABC9 for technology mapping 143

YosysHQ Yosys

(continued from previous page)

2, 3, .. inputs.

-maxlut <width>
when auto-generating the lut library, discard all luts equal to or
greater than this size (applicable when neither -lut nor -luts is
specified).

-dff
also pass $_DFF_[NP]_ cells through to ABC. modules with many clock
domains are supported and automatically partitioned by ABC.

-nocleanup
when this option is used, the temporary files created by this pass
are not removed. this is useful for debugging.

-showtmp
print the temp dir name in log. usually this is suppressed so that the
command output is identical across runs.

-box <file>
pass this file with box library to ABC.

Note that this is a logic optimization pass within Yosys that is calling ABC
internally. This is not going to "run ABC on your design". It will instead run
ABC on logic snippets extracted from your design. You will not get any useful
output when passing an ABC script that writes a file. Instead write your full
design as an XAIGER file with `write_xaiger' and then load that into ABC
externally if you want to use ABC to convert your design into another format.

[1] http://www.eecs.berkeley.edu/~alanmi/abc/

check:
abc9_ops -check [-dff] (option if -dff)

map:
abc9_ops -prep_hier [-dff] (option if -dff)
scc -specify -set_attr abc9_scc_id {}
abc9_ops -prep_bypass [-prep_dff] (option if -dff)
design -stash $abc9
design -load $abc9_map
proc
wbflip
techmap -wb -map %$abc9 -map +/techmap.v A:abc9_flop
opt -nodffe -nosdff
abc9_ops -prep_dff_submod ␣

→˓(only if -dff)
setattr -set submod "$abc9_flop" t:$_DFF_?_ %ci* %co* t:$_DFF_?_ %d ␣

→˓(only if -dff)
submod ␣

→˓(only if -dff)
setattr -mod -set whitebox 1 -set abc9_flop 1 -set abc9_box 1 *_$abc9_flop ␣

(continues on next page)

144 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

→˓(only if -dff)
foreach module in design

rename <module-name>_$abc9_flop _TECHMAP_REPLACE_ ␣
→˓(only if -dff)

abc9_ops -prep_dff_unmap ␣
→˓(only if -dff)

design -copy-to $abc9 =*_$abc9_flop ␣
→˓(only if -dff)

delete =*_$abc9_flop ␣
→˓(only if -dff)

design -stash $abc9_map
design -load $abc9
design -delete $abc9
techmap -wb -max_iter 1 -map %$abc9_map -map +/abc9_map.v [-D DFF] (option if␣

→˓-dff)
design -delete $abc9_map

pre:
read_verilog -icells -lib -specify +/abc9_model.v
abc9_ops -break_scc -prep_delays -prep_xaiger [-dff] (option for -dff)
abc9_ops -prep_lut <maxlut> (skip if -lut or -luts)
abc9_ops -prep_box (skip if -box)
design -stash $abc9
design -load $abc9_holes
techmap -wb -map %$abc9 -map +/techmap.v
opt -purge
aigmap
design -stash $abc9_holes
design -load $abc9
design -delete $abc9

exe:
aigmap
foreach module in selection

abc9_ops -write_lut <abc-temp-dir>/input.lut (skip if '-lut' or '-luts')
abc9_ops -write_box <abc-temp-dir>/input.box (skip if '-box')
write_xaiger -map <abc-temp-dir>/input.sym [-dff] <abc-temp-dir>/input.xaig
abc9_exe [options] -cwd <abc-temp-dir> -lut [<abc-temp-dir>/input.lut] -box [

→˓<abc-temp-dir>/input.box]
read_aiger -xaiger -wideports -module_name <module-name>$abc9 -map <abc-temp-

→˓dir>/input.sym <abc-temp-dir>/output.aig
abc9_ops -reintegrate [-dff]

unmap:
techmap -wb -map %$abc9_unmap -map +/abc9_unmap.v
design -delete $abc9_unmap
design -delete $abc9_holes
delete =*_$abc9_byp
setattr -mod -unset abc9_box_id

G.2. abc9 - use ABC9 for technology mapping 145

YosysHQ Yosys

G.3 abc9_exe - use ABC9 for technology mapping

abc9_exe [options]

This pass uses the ABC tool [1] for technology mapping of the top module
(according to the (* top *) attribute or if only one module is currently
selected) to a target FPGA architecture.

-exe <command>
use the specified command instead of "<yosys-bindir>/yosys-abc" to execute ABC.
This can e.g. be used to call a specific version of ABC or a wrapper.

-script <file>
use the specified ABC script file instead of the default script.

if <file> starts with a plus sign (+), then the rest of the filename
string is interpreted as the command string to be passed to ABC. The
leading plus sign is removed and all commas (,) in the string are
replaced with blanks before the string is passed to ABC.

if no -script parameter is given, the following scripts are used:
&scorr; &sweep; &dc2; &dch -f; &ps; &if {C} {W} {D} {R} -v; &mfs

-fast
use different default scripts that are slightly faster (at the cost
of output quality):
&if {C} {W} {D} {R} -v

-D <picoseconds>
set delay target. the string {D} in the default scripts above is
replaced by this option when used, and an empty string otherwise
(indicating best possible delay).

-lut <width>
generate netlist using luts of (max) the specified width.

-lut <w1>:<w2>
generate netlist using luts of (max) the specified width <w2>. All
luts with width <= <w1> have constant cost. for luts larger than <w1>
the area cost doubles with each additional input bit. the delay cost
is still constant for all lut widths.

-lut <file>
pass this file with lut library to ABC.

-luts <cost1>,<cost2>,<cost3>,<sizeN>:<cost4-N>,..
generate netlist using luts. Use the specified costs for luts with 1,
2, 3, .. inputs.

-showtmp
print the temp dir name in log. usually this is suppressed so that the

(continues on next page)

146 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

command output is identical across runs.

-box <file>
pass this file with box library to ABC.

-cwd <dir>
use this as the current working directory, inside which the 'input.xaig'
file is expected. temporary files will be created in this directory, and
the mapped result will be written to 'output.aig'.

Note that this is a logic optimization pass within Yosys that is calling ABC
internally. This is not going to "run ABC on your design". It will instead run
ABC on logic snippets extracted from your design. You will not get any useful
output when passing an ABC script that writes a file. Instead write your full
design as BLIF file with write_blif and then load that into ABC externally if
you want to use ABC to convert your design into another format.

[1] http://www.eecs.berkeley.edu/~alanmi/abc/

G.4 abc9_ops - helper functions for ABC9

abc9_ops [options] [selection]

This pass contains a set of supporting operations for use during ABC technology
mapping, and is expected to be called in conjunction with other operations from
the `abc9' script pass. Only fully-selected modules are supported.

-check
check that the design is valid, e.g. (* abc9_box_id *) values are
unique, (* abc9_carry *) is only given for one input/output port, etc.

-prep_hier
derive all used (* abc9_box *) or (* abc9_flop *) (if -dff option)
whitebox modules. with (* abc9_flop *) modules, only those containing
$dff/$_DFF_[NP]_ cells with zero initial state -- due to an ABC
limitation -- will be derived.

-prep_bypass
create techmap rules in the '$abc9_map' and '$abc9_unmap' designs for
bypassing sequential (* abc9_box *) modules using a combinatorial box
(named *_$abc9_byp). bypassing is necessary if sequential elements (e.g.
$dff, $mem, etc.) are discovered inside so that any combinatorial paths
will be correctly captured. this bypass box will only contain ports that
are referenced by a simple path declaration ($specify2 cell) inside a
specify block.

-prep_dff
select all (* abc9_flop *) modules instantiated in the design and store
in the named selection '$abc9_flops'.

(continues on next page)

G.4. abc9_ops - helper functions for ABC9 147

YosysHQ Yosys

(continued from previous page)

-prep_dff_submod
within (* abc9_flop *) modules, rewrite all edge-sensitive path
declarations and $setup() timing checks ($specify3 and $specrule cells)
that share a 'DST' port with the $_DFF_[NP]_.Q port from this 'Q' port
to the DFF's 'D' port. this is to prepare such specify cells to be moved
into the flop box.

-prep_dff_unmap
populate the '$abc9_unmap' design with techmap rules for mapping
*_$abc9_flop cells back into their derived cell types (where the rules
created by -prep_hier will then map back to the original cell with
parameters).

-prep_delays
insert `$__ABC9_DELAY' blackbox cells into the design to account for
certain required times.

-break_scc
for an arbitrarily chosen cell in each unique SCC of each selected
module (tagged with an (* abc9_scc_id = <int> *) attribute) interrupt
all wires driven by this cell's outputs with a temporary
$__ABC9_SCC_BREAKER cell to break the SCC.

-prep_xaiger
prepare the design for XAIGER output. this includes computing the
topological ordering of ABC9 boxes, as well as preparing the
'$abc9_holes' design that contains the logic behaviour of ABC9
whiteboxes.

-dff
consider flop cells (those instantiating modules marked with
(* abc9_flop *)) during -prep_{delays,xaiger,box}.

-prep_lut <maxlut>
pre-compute the lut library by analysing all modules marked with
(* abc9_lut=<area> *).

-write_lut <dst>
write the pre-computed lut library to <dst>.

-prep_box
pre-compute the box library by analysing all modules marked with
(* abc9_box *).

-write_box <dst>
write the pre-computed box library to <dst>.

-reintegrate
for each selected module, re-intergrate the module '<module-name>$abc9'
by first recovering ABC9 boxes, and then stitching in the remaining
primary inputs and outputs.

148 Appendix G. Command line reference

YosysHQ Yosys

G.5 add - add objects to the design

add <command> [selection]

This command adds objects to the design. It operates on all fully selected
modules. So e.g. 'add -wire foo' will add a wire foo to all selected modules.

add {-wire|-input|-inout|-output} <name> <width> [selection]

Add a wire (input, inout, output port) with the given name and width. The
command will fail if the object exists already and has different properties
than the object to be created.

add -global_input <name> <width> [selection]

Like 'add -input', but also connect the signal between instances of the
selected modules.

add {-assert|-assume|-live|-fair|-cover} <name1> [-if <name2>]

Add an $assert, $assume, etc. cell connected to a wire named name1, with its
enable signal optionally connected to a wire named name2 (default: 1'b1).

add -mod <name[s]>

Add module[s] with the specified name[s].

G.6 aigmap - map logic to and-inverter-graph circuit

aigmap [options] [selection]

Replace all logic cells with circuits made of only $_AND_ and
$_NOT_ cells.

-nand
Enable creation of $_NAND_ cells

-select
Overwrite replaced cells in the current selection with new $_AND_,
$_NOT_, and $_NAND_, cells

G.5. add - add objects to the design 149

YosysHQ Yosys

G.7 alumacc - extract ALU and MACC cells

alumacc [selection]

This pass translates arithmetic operations like $add, $mul, $lt, etc. to $alu
and $macc cells.

G.8 anlogic_eqn - Anlogic: Calculate equations for luts

anlogic_eqn [selection]

Calculate equations for luts since bitstream generator depends on it.

G.9 anlogic_fixcarry - Anlogic: fix carry chain

anlogic_fixcarry [options] [selection]

Add Anlogic adders to fix carry chain if needed.

G.10 assertpmux - adds asserts for parallel muxes

assertpmux [options] [selection]

This command adds asserts to the design that assert that all parallel muxes
($pmux cells) have a maximum of one of their inputs enable at any time.

-noinit
do not enforce the pmux condition during the init state

-always
usually the $pmux condition is only checked when the $pmux output
is used by the mux tree it drives. this option will deactivate this
additional constraint and check the $pmux condition always.

G.11 async2sync - convert async FF inputs to sync circuits

async2sync [options] [selection]

This command replaces async FF inputs with sync circuits emulating the same
behavior for when the async signals are actually synchronized to the clock.

This pass assumes negative hold time for the async FF inputs. For example when
a reset deasserts with the clock edge, then the FF output will still drive the

(continues on next page)

150 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

reset value in the next cycle regardless of the data-in value at the time of
the clock edge.

G.12 attrmap - renaming attributes

attrmap [options] [selection]

This command renames attributes and/or maps key/value pairs to
other key/value pairs.

-tocase <name>
Match attribute names case-insensitively and set it to the specified
name.

-rename <old_name> <new_name>
Rename attributes as specified

-map <old_name>=<old_value> <new_name>=<new_value>
Map key/value pairs as indicated.

-imap <old_name>=<old_value> <new_name>=<new_value>
Like -map, but use case-insensitive match for <old_value> when
it is a string value.

-remove <name>=<value>
Remove attributes matching this pattern.

-modattr
Operate on module attributes instead of attributes on wires and cells.

For example, mapping Xilinx-style "keep" attributes to Yosys-style:

attrmap -tocase keep -imap keep="true" keep=1 \
-imap keep="false" keep=0 -remove keep=0

G.13 attrmvcp - move or copy attributes from wires to driving cells

attrmvcp [options] [selection]

Move or copy attributes on wires to the cells driving them.

-copy
By default, attributes are moved. This will only add
the attribute to the cell, without removing it from
the wire.

-purge
(continues on next page)

G.12. attrmap - renaming attributes 151

YosysHQ Yosys

(continued from previous page)

If no selected cell consumes the attribute, then it is
left on the wire by default. This option will cause the
attribute to be removed from the wire, even if no selected
cell takes it.

-driven
By default, attriburtes are moved to the cell driving the
wire. With this option set it will be moved to the cell
driven by the wire instead.

-attr <attrname>
Move or copy this attribute. This option can be used
multiple times.

G.14 autoname - automatically assign names to objects

autoname [selection]

Assign auto-generated public names to objects with private names (the ones
with $-prefix).

G.15 blackbox - convert modules into blackbox modules

blackbox [options] [selection]

Convert modules into blackbox modules (remove contents and set the blackbox
module attribute).

G.16 bmuxmap - transform $bmux cells to trees of $mux cells

bmuxmap [selection]

This pass transforms $bmux cells to trees of $mux cells.

-pmux
transform to $pmux instead of $mux cells.

152 Appendix G. Command line reference

YosysHQ Yosys

G.17 booth - map $mul cells to Booth multipliers

booth [selection]

This pass replaces multiplier cells with a radix-4 Booth-encoded implementation.
It operates on $mul cells whose width of operands is at least 4x4 and whose
width of result is at least 8.

-lowpower
use an alternative low-power architecture for the generated multiplier
(signed multipliers only)

G.18 bugpoint - minimize testcases

bugpoint [options] [-script <filename> | -command "<command>"]

This command minimizes the current design that is known to crash Yosys with the
given script into a smaller testcase. It does this by removing an arbitrary part
of the design and recursively invokes a new Yosys process with this modified
design and the same script, repeating these steps while it can find a smaller
design that still causes a crash. Once this command finishes, it replaces the
current design with the smallest testcase it was able to produce.
In order to save the reduced testcase you must write this out to a file with
another command after `bugpoint` like `write_rtlil` or `write_verilog`.

-script <filename> | -command "<command>"
use this script file or command to crash Yosys. required.

-yosys <filename>
use this Yosys binary. if not specified, `yosys` is used.

-grep "<string>"
only consider crashes that place this string in the log file.

-fast
run `proc_clean; clean -purge` after each minimization step. converges
faster, but produces larger testcases, and may fail to produce any
testcase at all if the crash is related to dangling wires.

-clean
run `proc_clean; clean -purge` before checking testcase and after
finishing. produces smaller and more useful testcases, but may fail to
produce any testcase at all if the crash is related to dangling wires.

It is possible to constrain which parts of the design will be considered for
removal. Unless one or more of the following options are specified, all parts
will be considered.

-modules
try to remove modules. modules with a (* bugpoint_keep *) attribute

(continues on next page)

G.17. booth - map $mul cells to Booth multipliers 153

YosysHQ Yosys

(continued from previous page)

will be skipped.

-ports
try to remove module ports. ports with a (* bugpoint_keep *) attribute
will be skipped (useful for clocks, resets, etc.)

-cells
try to remove cells. cells with a (* bugpoint_keep *) attribute will
be skipped.

-connections
try to reconnect ports to 'x.

-processes
try to remove processes. processes with a (* bugpoint_keep *) attribute
will be skipped.

-assigns
try to remove process assigns from cases.

-updates
try to remove process updates from syncs.

-runner "<prefix>"
child process wrapping command, e.g., "timeout 30", or valgrind.

G.19 bwmuxmap - replace $bwmux cells with equivalent logic

bwmxumap [options] [selection]

This pass replaces $bwmux cells with equivalent logic

G.20 cd - a shortcut for ‘select -module <name>’

cd <modname>

This is just a shortcut for 'select -module <modname>'.

cd <cellname>

When no module with the specified name is found, but there is a cell
with the specified name in the current module, then this is equivalent
to 'cd <celltype>'.

cd ..
(continues on next page)

154 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

Remove trailing substrings that start with '.' in current module name until
the name of a module in the current design is generated, then switch to that
module. Otherwise clear the current selection.

cd

This is just a shortcut for 'select -clear'.

G.21 check - check for obvious problems in the design

check [options] [selection]

This pass identifies the following problems in the current design:

- combinatorial loops
- two or more conflicting drivers for one wire
- used wires that do not have a driver

Options:

-noinit
also check for wires which have the 'init' attribute set

-initdrv
also check for wires that have the 'init' attribute set and are not
driven by an FF cell type

-mapped
also check for internal cells that have not been mapped to cells of the
target architecture

-allow-tbuf
modify the -mapped behavior to still allow $_TBUF_ cells

-assert
produce a runtime error if any problems are found in the current design

G.22 chformal - change formal constraints of the design

chformal [types] [mode] [options] [selection]

Make changes to the formal constraints of the design. The [types] options
the type of constraint to operate on. If none of the following options are
given, the command will operate on all constraint types:

(continues on next page)

G.21. check - check for obvious problems in the design 155

YosysHQ Yosys

(continued from previous page)

-assert $assert cells, representing assert(...) constraints
-assume $assume cells, representing assume(...) constraints
-live $live cells, representing assert(s_eventually ...)
-fair $fair cells, representing assume(s_eventually ...)
-cover $cover cells, representing cover() statements

Exactly one of the following modes must be specified:

-remove
remove the cells and thus constraints from the design

-early
bypass FFs that only delay the activation of a constraint

-delay <N>
delay activation of the constraint by <N> clock cycles

-skip <N>
ignore activation of the constraint in the first <N> clock cycles

-coverenable
add cover statements for the enable signals of the constraints

Note: For the Verific frontend it is currently not guaranteed that a
reachable SVA statement corresponds to an active enable signal.

-assert2assume
-assume2assert
-live2fair
-fair2live

change the roles of cells as indicated. these options can be combined

G.23 chparam - re-evaluate modules with new parameters

chparam [-set name value]... [selection]

Re-evaluate the selected modules with new parameters. String values must be
passed in double quotes (").

chparam -list [selection]

List the available parameters of the selected modules.

156 Appendix G. Command line reference

YosysHQ Yosys

G.24 chtype - change type of cells in the design

chtype [options] [selection]

Change the types of cells in the design.

-set <type>
set the cell type to the given type

-map <old_type> <new_type>
change cells types that match <old_type> to <new_type>

G.25 clean - remove unused cells and wires

clean [options] [selection]

This is identical to 'opt_clean', but less verbose.

When commands are separated using the ';;' token, this command will be executed
between the commands.

When commands are separated using the ';;;' token, this command will be executed
in -purge mode between the commands.

G.26 clean_zerowidth - clean zero-width connections from the design

clean_zerowidth [selection]

Fixes the selected cells and processes to contain no zero-width connections.
Depending on the cell type, this may be implemented by removing the connection,
widening it to 1-bit, or removing the cell altogether.

G.27 clk2fflogic - convert clocked FFs to generic $ff cells

clk2fflogic [options] [selection]

This command replaces clocked flip-flops with generic $ff cells that use the
implicit global clock. This is useful for formal verification of designs with
multiple clocks.

This pass assumes negative hold time for the async FF inputs. For example when
a reset deasserts with the clock edge, then the FF output will still drive the
reset value in the next cycle regardless of the data-in value at the time of
the clock edge.

G.24. chtype - change type of cells in the design 157

YosysHQ Yosys

G.28 clkbufmap - insert clock buffers on clock networks

clkbufmap [options] [selection]

Inserts clock buffers between nets connected to clock inputs and their drivers.

In the absence of any selection, all wires without the 'clkbuf_inhibit'
attribute will be considered for clock buffer insertion.
Alternatively, to consider all wires without the 'buffer_type' attribute set to
'none' or 'bufr' one would specify:

'w:* a:buffer_type=none a:buffer_type=bufr %u %d'
as the selection.

-buf <celltype> <portname_out>:<portname_in>
Specifies the cell type to use for the clock buffers
and its port names. The first port will be connected to
the clock network sinks, and the second will be connected
to the actual clock source.

-inpad <celltype> <portname_out>:<portname_in>
If specified, a PAD cell of the given type is inserted on
clock nets that are also top module's inputs (in addition
to the clock buffer, if any).

At least one of -buf or -inpad should be specified.

G.29 connect - create or remove connections

connect [-nomap] [-nounset] -set <lhs-expr> <rhs-expr>

Create a connection. This is equivalent to adding the statement 'assign
<lhs-expr> = <rhs-expr>;' to the Verilog input. Per default, all existing
drivers for <lhs-expr> are unconnected. This can be overwritten by using
the -nounset option.

connect [-nomap] -unset <expr>

Unconnect all existing drivers for the specified expression.

connect [-nomap] [-assert] -port <cell> <port> <expr>

Connect the specified cell port to the specified cell port.

Per default signal alias names are resolved and all signal names are mapped
the the signal name of the primary driver. Using the -nomap option deactivates
this behavior.

(continues on next page)

158 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

The connect command operates in one module only. Either only one module must
be selected or an active module must be set using the 'cd' command.

The -assert option verifies that the connection already exists, instead of
making it.

This command does not operate on module with processes.

G.30 connect_rpc - connect to RPC frontend

connect_rpc -exec <command> [args...]
connect_rpc -path <path>

Load modules using an out-of-process frontend.

-exec <command> [args...]
run <command> with arguments [args...]. send requests on stdin, read
responses from stdout.

-path <path>
connect to Unix domain socket at <path>. (Unix)
connect to bidirectional byte-type named pipe at <path>. (Windows)

A simple JSON-based, newline-delimited protocol is used for communicating with
the frontend. Yosys requests data from the frontend by sending exactly 1 line
of JSON. Frontend responds with data or error message by replying with exactly
1 line of JSON as well.

-> {"method": "modules"}
<- {"modules": ["<module-name>", ...]}
<- {"error": "<error-message>"}

request for the list of modules that can be derived by this frontend.
the 'hierarchy' command will call back into this frontend if a cell
with type <module-name> is instantiated in the design.

-> {"method": "derive", "module": "<module-name">, "parameters": {
"<param-name>": {"type": "[unsigned|signed|string|real]",

"value": "<param-value>"}, ...}}
<- {"frontend": "[rtlil|verilog|...]","source": "<source>"}}
<- {"error": "<error-message>"}

request for the module <module-name> to be derived for a specific set of
parameters. <param-name> starts with \ for named parameters, and with $
for unnamed parameters, which are numbered starting at 1.<param-value>
for integer parameters is always specified as a binary string of
unlimited precision. the <source> returned by the frontend is
hygienically parsedby a built-in Yosys <frontend>, allowing the RPC
frontend to return anyconvenient representation of the module. the
derived module is cached,so the response should be the same whenever the
same set of parameters is provided.

G.30. connect_rpc - connect to RPC frontend 159

YosysHQ Yosys

G.31 connwrappers - match width of input-output port pairs

connwrappers [options] [selection]

Wrappers are used in coarse-grain synthesis to wrap cells with smaller ports
in wrapper cells with a (larger) constant port size. I.e. the upper bits
of the wrapper output are signed/unsigned bit extended. This command uses this
knowledge to rewire the inputs of the driven cells to match the output of
the driving cell.

-signed <cell_type> <port_name> <width_param>
-unsigned <cell_type> <port_name> <width_param>

consider the specified signed/unsigned wrapper output

-port <cell_type> <port_name> <width_param> <sign_param>
use the specified parameter to decide if signed or unsigned

The options -signed, -unsigned, and -port can be specified multiple times.

G.32 coolrunner2_fixup - insert necessary buffer cells for CoolRunner-II
architecture

coolrunner2_fixup [options] [selection]

Insert necessary buffer cells for CoolRunner-II architecture.

G.33 coolrunner2_sop - break $sop cells into ANDTERM/ORTERM
cells

coolrunner2_sop [options] [selection]

Break $sop cells into ANDTERM/ORTERM cells.

G.34 copy - copy modules in the design

copy old_name new_name

Copy the specified module. Note that selection patterns are not supported
by this command.

160 Appendix G. Command line reference

YosysHQ Yosys

G.35 cover - print code coverage counters

cover [options] [pattern]

Print the code coverage counters collected using the cover() macro in the Yosys
C++ code. This is useful to figure out what parts of Yosys are utilized by a
test bench.

-q
Do not print output to the normal destination (console and/or log file)

-o file
Write output to this file, truncate if exists.

-a file
Write output to this file, append if exists.

-d dir
Write output to a newly created file in the specified directory.

When one or more pattern (shell wildcards) are specified, then only counters
matching at least one pattern are printed.

It is also possible to instruct Yosys to print the coverage counters on program
exit to a file using environment variables:

YOSYS_COVER_DIR="{dir-name}" yosys {args}

This will create a file (with an auto-generated name) in this
directory and write the coverage counters to it.

YOSYS_COVER_FILE="{file-name}" yosys {args}

This will append the coverage counters to the specified file.

Hint: Use the following AWK command to consolidate Yosys coverage files:

gawk '{ p[$3] = $1; c[$3] += $2; } END { for (i in p)
printf "%-60s %10d %s\n", p[i], c[i], i; }' {files} | sort -k3

Coverage counters are only available in Yosys for Linux.

G.35. cover - print code coverage counters 161

YosysHQ Yosys

G.36 cutpoint - adds formal cut points to the design

cutpoint [options] [selection]

This command adds formal cut points to the design.

-undef
set cupoint nets to undef (x). the default behavior is to create a
$anyseq cell and drive the cutpoint net from that

G.37 debug - run command with debug log messages enabled

debug cmd

Execute the specified command with debug log messages enabled

G.38 delete - delete objects in the design

delete [selection]

Deletes the selected objects. This will also remove entire modules, if the
whole module is selected.

delete {-input|-output|-port} [selection]

Does not delete any object but removes the input and/or output flag on the
selected wires, thus 'deleting' module ports.

G.39 deminout - demote inout ports to input or output

deminout [options] [selection]

"Demote" inout ports to input or output ports, if possible.

G.40 demuxmap - transform $demux cells to $eq + $mux cells

demuxmap [selection]

This pass transforms $demux cells to a bunch of equality comparisons.

162 Appendix G. Command line reference

YosysHQ Yosys

G.41 design - save, restore and reset current design

design -reset

Clear the current design.

design -save <name>

Save the current design under the given name.

design -stash <name>

Save the current design under the given name and then clear the current design.

design -push

Push the current design to the stack and then clear the current design.

design -push-copy

Push the current design to the stack without clearing the current design.

design -pop

Reset the current design and pop the last design from the stack.

design -load <name>

Reset the current design and load the design previously saved under the given
name.

design -copy-from <name> [-as <new_mod_name>] <selection>

Copy modules from the specified design into the current one. The selection is
evaluated in the other design.

design -copy-to <name> [-as <new_mod_name>] [selection]

Copy modules from the current design into the specified one.

design -import <name> [-as <new_top_name>] [selection]

Import the specified design into the current design. The source design must
(continues on next page)

G.41. design - save, restore and reset current design 163

YosysHQ Yosys

(continued from previous page)

either have a selected top module or the selection must contain exactly one
module that is then used as top module for this command.

design -reset-vlog

The Verilog front-end remembers defined macros and top-level declarations
between calls to 'read_verilog'. This command resets this memory.

design -delete <name>

Delete the design previously saved under the given name.

G.42 dffinit - set INIT param on FF cells

dffinit [options] [selection]

This pass sets an FF cell parameter to the the initial value of the net it
drives. (This is primarily used in FPGA flows.)

-ff <cell_name> <output_port> <init_param>
operate on the specified cell type. this option can be used
multiple times.

-highlow
use the string values "high" and "low" to represent a single-bit
initial value of 1 or 0. (multi-bit values are not supported in this
mode.)

-strinit <string for high> <string for low>
use string values in the command line to represent a single-bit
initial value of 1 or 0. (multi-bit values are not supported in this
mode.)

-noreinit
fail if the FF cell has already a defined initial value set in other
passes and the initial value of the net it drives is not equal to
the already defined initial value.

G.43 dfflegalize - convert FFs to types supported by the target

dfflegalize [options] [selection]

Converts FFs to types supported by the target.

-cell <cell_type_pattern> <init_values>
specifies a supported group of FF cells. <cell_type_pattern>

(continues on next page)

164 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

is a yosys internal fine cell name, where ? characters can be
as a wildcard matching any character. <init_values> specifies
which initialization values these FF cells can support, and can
be one of:

- x (no init value supported)
- 0
- 1
- r (init value has to match reset value, only for some FF types)
- 01 (both 0 and 1 supported).

-mince <num>
specifies a minimum number of FFs that should be using any given
clock enable signal. If a clock enable signal doesn't meet this
threshold, it is unmapped into soft logic.

-minsrst <num>
specifies a minimum number of FFs that should be using any given
sync set/reset signal. If a sync set/reset signal doesn't meet this
threshold, it is unmapped into soft logic.

The following cells are supported by this pass (ie. will be ingested,
and can be specified as allowed targets):

- $_DFF_[NP]_
- $_DFFE_[NP][NP]_
- $_DFF_[NP][NP][01]_
- $_DFFE_[NP][NP][01][NP]_
- $_ALDFF_[NP][NP]_
- $_ALDFFE_[NP][NP][NP]_
- $_DFFSR_[NP][NP][NP]_
- $_DFFSRE_[NP][NP][NP][NP]_
- $_SDFF_[NP][NP][01]_
- $_SDFFE_[NP][NP][01][NP]_
- $_SDFFCE_[NP][NP][01][NP]_
- $_SR_[NP][NP]_
- $_DLATCH_[NP]_
- $_DLATCH_[NP][NP][01]_
- $_DLATCHSR_[NP][NP][NP]_

The following transformations are performed by this pass:

- upconversion from a less capable cell to a more capable cell, if the less
capable cell is not supported (eg. dff -> dffe, or adff -> dffsr)

- unmapping FFs with clock enable (due to unsupported cell type or -mince)
- unmapping FFs with sync reset (due to unsupported cell type or -minsrst)
- adding inverters on the control pins (due to unsupported polarity)
- adding inverters on the D and Q pins and inverting the init/reset values
(due to unsupported init or reset value)

- converting sr into adlatch (by tying D to 1 and using E as set input)
- emulating unsupported dffsr cell by adff + adff + sr + mux
- emulating unsupported dlatchsr cell by adlatch + adlatch + sr + mux

(continues on next page)

G.43. dfflegalize - convert FFs to types supported by the target 165

YosysHQ Yosys

(continued from previous page)

- emulating adff when the (reset, init) value combination is unsupported by
dff + adff + dlatch + mux

- emulating adlatch when the (reset, init) value combination is unsupported by
- dlatch + adlatch + dlatch + mux
If the pass is unable to realize a given cell type (eg. adff when only plain dff
is available), an error is raised.

G.44 dfflibmap - technology mapping of flip-flops

dfflibmap [-prepare] [-map-only] [-info] -liberty <file> [selection]

Map internal flip-flop cells to the flip-flop cells in the technology
library specified in the given liberty file.

This pass may add inverters as needed. Therefore it is recommended to
first run this pass and then map the logic paths to the target technology.

When called with -prepare, this command will convert the internal FF cells
to the internal cell types that best match the cells found in the given
liberty file, but won't actually map them to the target cells.

When called with -map-only, this command will only map internal cell
types that are already of exactly the right type to match the target
cells, leaving remaining internal cells untouched.

When called with -info, this command will only print the target cell
list, along with their associated internal cell types, and the arguments
that would be passed to the dfflegalize pass. The design will not be
changed.

G.45 dffunmap - unmap clock enable and synchronous reset from FFs

dffunmap [options] [selection]

This pass transforms FF types with clock enable and/or synchronous reset into
their base type (with neither clock enable nor sync reset) by emulating the
clock enable and synchronous reset with multiplexers on the cell input.

-ce-only
unmap only clock enables, leave synchronous resets alone.

-srst-only
unmap only synchronous resets, leave clock enables alone.

166 Appendix G. Command line reference

YosysHQ Yosys

G.46 dft_tag - create tagging logic for data flow tracking

dft_tag [options] [selection]

This pass... TODO

-overwrite-only
Only process $overwrite_tag and $original_tag cells.

-tag-public
For each public wire that may carry tagged data, create a new public
wire (named <wirename>:<tagname>) that carries the tag bits. Note
that without this, tagging logic will only be emitted as required
for uses of $get_tag.

G.47 dump - print parts of the design in RTLIL format

dump [options] [selection]

Write the selected parts of the design to the console or specified file in
RTLIL format.

-m
also dump the module headers, even if only parts of a single
module is selected

-n
only dump the module headers if the entire module is selected

-o <filename>
write to the specified file.

-a <filename>
like -outfile but append instead of overwrite

G.48 echo - turning echoing back of commands on and off

echo on

Print all commands to log before executing them.

echo off

Do not print all commands to log before executing them. (default)

G.46. dft_tag - create tagging logic for data flow tracking 167

YosysHQ Yosys

G.49 edgetypes - list all types of edges in selection

edgetypes [options] [selection]

This command lists all unique types of 'edges' found in the selection. An 'edge'
is a 4-tuple of source and sink cell type and port name.

G.50 efinix_fixcarry - Efinix: fix carry chain

efinix_fixcarry [options] [selection]

Add Efinix adders to fix carry chain if needed.

G.51 equiv_add - add a $equiv cell

equiv_add [-try] gold_sig gate_sig

This command adds an $equiv cell for the specified signals.

equiv_add [-try] -cell gold_cell gate_cell

This command adds $equiv cells for the ports of the specified cells.

G.52 equiv_induct - proving $equiv cells using temporal induction

equiv_induct [options] [selection]

Uses a version of temporal induction to prove $equiv cells.

Only selected $equiv cells are proven and only selected cells are used to
perform the proof.

-undef
enable modelling of undef states

-seq <N>
the max. number of time steps to be considered (default = 4)

This command is very effective in proving complex sequential circuits, when
the internal state of the circuit quickly propagates to $equiv cells.

However, this command uses a weak definition of 'equivalence': This command
proves that the two circuits will not diverge after they produce equal
outputs (observable points via $equiv) for at least <N> cycles (the <N>

(continues on next page)

168 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

specified via -seq).

Combined with simulation this is very powerful because simulation can give
you confidence that the circuits start out synced for at least <N> cycles
after reset.

G.53 equiv_make - prepare a circuit for equivalence checking

equiv_make [options] gold_module gate_module equiv_module

This creates a module annotated with $equiv cells from two presumably
equivalent modules. Use commands such as 'equiv_simple' and 'equiv_status'
to work with the created equivalent checking module.

-inames
Also match cells and wires with $... names.

-blacklist <file>
Do not match cells or signals that match the names in the file.

-encfile <file>
Match FSM encodings using the description from the file.
See 'help fsm_recode' for details.

-make_assert
Check equivalence with $assert cells instead of $equiv.
$eqx (===) is used to compare signals.

Note: The circuit created by this command is not a miter (with something like
a trigger output), but instead uses $equiv cells to encode the equivalence
checking problem. Use 'miter -equiv' if you want to create a miter circuit.

G.54 equiv_mark - mark equivalence checking regions

equiv_mark [options] [selection]

This command marks the regions in an equivalence checking module. Region 0 is
the proven part of the circuit. Regions with higher numbers are connected
unproven subcricuits. The integer attribute 'equiv_region' is set on all
wires and cells.

G.53. equiv_make - prepare a circuit for equivalence checking 169

YosysHQ Yosys

G.55 equiv_miter - extract miter from equiv circuit

equiv_miter [options] miter_module [selection]

This creates a miter module for further analysis of the selected $equiv cells.

-trigger
Create a trigger output

-cmp
Create cmp_* outputs for individual unproven $equiv cells

-assert
Create a $assert cell for each unproven $equiv cell

-undef
Create compare logic that handles undefs correctly

G.56 equiv_opt - prove equivalence for optimized circuit

equiv_opt [options] [command]

This command uses temporal induction to check circuit equivalence before and
after an optimization pass.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to the start of the command list, and empty to
label is synonymous to the end of the command list.

-map <filename>
expand the modules in this file before proving equivalence. this is
useful for handling architecture-specific primitives.

-blacklist <file>
Do not match cells or signals that match the names in the file
(passed to equiv_make).

-assert
produce an error if the circuits are not equivalent.

-multiclock
run clk2fflogic before equivalence checking.

-async2sync
run async2sync before equivalence checking.

-undef
enable modelling of undef states during equiv_induct.

(continues on next page)

170 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-nocheck
disable running check before and after the command under test.

The following commands are executed by this verification command:

run_pass:
hierarchy -auto-top
design -save preopt
check -assert (unless -nocheck)
[command]
check -assert (unless -nocheck)
design -stash postopt

prepare:
design -copy-from preopt -as gold A:top
design -copy-from postopt -as gate A:top

techmap: (only with -map)
techmap -wb -D EQUIV -autoproc -map <filename> ...

prove:
clk2fflogic (only with -multiclock)
async2sync (only with -async2sync)
equiv_make -blacklist <filename> ... gold gate equiv
equiv_induct [-undef] equiv
equiv_status [-assert] equiv

restore:
design -load preopt

G.57 equiv_purge - purge equivalence checking module

equiv_purge [options] [selection]

This command removes the proven part of an equivalence checking module, leaving
only the unproven segments in the design. This will also remove and add module
ports as needed.

G.58 equiv_remove - remove $equiv cells

equiv_remove [options] [selection]

This command removes the selected $equiv cells. If neither -gold nor -gate is
used then only proven cells are removed.

-gold
keep gold circuit

(continues on next page)

G.57. equiv_purge - purge equivalence checking module 171

YosysHQ Yosys

(continued from previous page)

-gate
keep gate circuit

G.59 equiv_simple - try proving simple $equiv instances

equiv_simple [options] [selection]

This command tries to prove $equiv cells using a simple direct SAT approach.

-v
verbose output

-undef
enable modelling of undef states

-short
create shorter input cones that stop at shared nodes. This yields
simpler SAT problems but sometimes fails to prove equivalence.

-nogroup
disabling grouping of $equiv cells by output wire

-seq <N>
the max. number of time steps to be considered (default = 1)

G.60 equiv_status - print status of equivalent checking module

equiv_status [options] [selection]

This command prints status information for all selected $equiv cells.

-assert
produce an error if any unproven $equiv cell is found

G.61 equiv_struct - structural equivalence checking

equiv_struct [options] [selection]

This command adds additional $equiv cells based on the assumption that the
gold and gate circuit are structurally equivalent. Note that this can introduce
bad $equiv cells in cases where the netlists are not structurally equivalent,
for example when analyzing circuits with cells with commutative inputs. This
command will also de-duplicate gates.

(continues on next page)

172 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-fwd
by default this command performans forward sweeps until nothing can
be merged by forwards sweeps, then backward sweeps until forward
sweeps are effective again. with this option set only forward sweeps
are performed.

-fwonly <cell_type>
add the specified cell type to the list of cell types that are only
merged in forward sweeps and never in backward sweeps. $equiv is in
this list automatically.

-icells
by default, the internal RTL and gate cell types are ignored. add
this option to also process those cell types with this command.

-maxiter <N>
maximum number of iterations to run before aborting

G.62 eval - evaluate the circuit given an input

eval [options] [selection]

This command evaluates the value of a signal given the value of all required
inputs.

-set <signal> <value>
set the specified signal to the specified value.

-set-undef
set all unspecified source signals to undef (x)

-table <signal>
create a truth table using the specified input signals

-show <signal>
show the value for the specified signal. if no -show option is passed
then all output ports of the current module are used.

G.63 exec - execute commands in the operating system shell

exec [options] -- [command]

Execute a command in the operating system shell. All supplied arguments are
concatenated and passed as a command to popen(3). Whitespace is not guaranteed
to be preserved, even if quoted. stdin and stderr are not connected, while
stdout is logged unless the "-q" option is specified.

(continues on next page)

G.62. eval - evaluate the circuit given an input 173

YosysHQ Yosys

(continued from previous page)

-q
Suppress stdout and stderr from subprocess

-expect-return <int>
Generate an error if popen() does not return specified value.
May only be specified once; the final specified value is controlling
if specified multiple times.

-expect-stdout <regex>
Generate an error if the specified regex does not match any line
in subprocess's stdout. May be specified multiple times.

-not-expect-stdout <regex>
Generate an error if the specified regex matches any line
in subprocess's stdout. May be specified multiple times.

Example: exec -q -expect-return 0 -- echo "bananapie" | grep "nana"

G.64 expose - convert internal signals to module ports

expose [options] [selection]

This command exposes all selected internal signals of a module as additional
outputs.

-dff
only consider wires that are directly driven by register cell.

-cut
when exposing a wire, create an input/output pair and cut the internal
signal path at that wire.

-input
when exposing a wire, create an input port and disconnect the internal
driver.

-shared
only expose those signals that are shared among the selected modules.
this is useful for preparing modules for equivalence checking.

-evert
also turn connections to instances of other modules to additional
inputs and outputs and remove the module instances.

-evert-dff
turn flip-flops to sets of inputs and outputs.

(continues on next page)

174 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-sep <separator>
when creating new wire/port names, the original object name is suffixed
with this separator (default: '.') and the port name or a type
designator for the exposed signal.

G.65 extract - find subcircuits and replace them with cells

extract -map <map_file> [options] [selection]
extract -mine <out_file> [options] [selection]

This pass looks for subcircuits that are isomorphic to any of the modules
in the given map file and replaces them with instances of this modules. The
map file can be a Verilog source file (*.v) or an RTLIL source file (*.il).

-map <map_file>
use the modules in this file as reference. This option can be used
multiple times.

-map %<design-name>
use the modules in this in-memory design as reference. This option can
be used multiple times.

-verbose
print debug output while analyzing

-constports
also find instances with constant drivers. this may be much
slower than the normal operation.

-nodefaultswaps
normally builtin port swapping rules for internal cells are used per
default. This turns that off, so e.g. 'a^b' does not match 'b^a'
when this option is used.

-compat <needle_type> <haystack_type>
Per default, the cells in the map file (needle) must have the
type as the cells in the active design (haystack). This option
can be used to register additional pairs of types that should
match. This option can be used multiple times.

-swap <needle_type> <port1>,<port2>[,...]
Register a set of swappable ports for a needle cell type.
This option can be used multiple times.

-perm <needle_type> <port1>,<port2>[,...] <portA>,<portB>[,...]
Register a valid permutation of swappable ports for a needle
cell type. This option can be used multiple times.

-cell_attr <attribute_name>
(continues on next page)

G.65. extract - find subcircuits and replace them with cells 175

YosysHQ Yosys

(continued from previous page)

Attributes on cells with the given name must match.

-wire_attr <attribute_name>
Attributes on wires with the given name must match.

-ignore_parameters
Do not use parameters when matching cells.

-ignore_param <cell_type> <parameter_name>
Do not use this parameter when matching cells.

This pass does not operate on modules with unprocessed processes in it.
(I.e. the 'proc' pass should be used first to convert processes to netlists.)

This pass can also be used for mining for frequent subcircuits. In this mode
the following options are to be used instead of the -map option.

-mine <out_file>
mine for frequent subcircuits and write them to the given RTLIL file

-mine_cells_span <min> <max>
only mine for subcircuits with the specified number of cells
default value: 3 5

-mine_min_freq <num>
only mine for subcircuits with at least the specified number of matches
default value: 10

-mine_limit_matches_per_module <num>
when calculating the number of matches for a subcircuit, don't count
more than the specified number of matches per module

-mine_max_fanout <num>
don't consider internal signals with more than <num> connections

The modules in the map file may have the attribute 'extract_order' set to an
integer value. Then this value is used to determine the order in which the pass
tries to map the modules to the design (ascending, default value is 0).

See 'help techmap' for a pass that does the opposite thing.

G.66 extract_counter - Extract GreenPak4 counter cells

extract_counter [options] [selection]

This pass converts non-resettable or async resettable counters to counter cells.
Use a target-specific 'techmap' map file to convert those cells to the actual
target cells.

(continues on next page)

176 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-maxwidth N
Only extract counters up to N bits wide (default 64)

-minwidth N
Only extract counters at least N bits wide (default 2)

-allow_arst yes|no
Allow counters to have async reset (default yes)

-dir up|down|both
Look for up-counters, down-counters, or both (default down)

-pout X,Y,...
Only allow parallel output from the counter to the listed cell types
(if not specified, parallel outputs are not restricted)

G.67 extract_fa - find and extract full/half adders

extract_fa [options] [selection]

This pass extracts full/half adders from a gate-level design.

-fa, -ha
Enable cell types (fa=full adder, ha=half adder)
All types are enabled if none of this options is used

-d <int>
Set maximum depth for extracted logic cones (default=20)

-b <int>
Set maximum breadth for extracted logic cones (default=6)

-v
Verbose output

G.68 extract_reduce - converts gate chains into $reduce_* cells

extract_reduce [options] [selection]

converts gate chains into $reduce_* cells

This command finds chains of $_AND_, $_OR_, and $_XOR_ cells and replaces them
with their corresponding $reduce_* cells. Because this command only operates on
these cell types, it is recommended to map the design to only these cell types
using the `abc -g` command. Note that, in some cases, it may be more effective
to map the design to only $_AND_ cells, run extract_reduce, map the remaining
parts of the design to AND/OR/XOR cells, and run extract_reduce a second time.

(continues on next page)

G.67. extract_fa - find and extract full/half adders 177

YosysHQ Yosys

(continued from previous page)

-allow-off-chain
Allows matching of cells that have loads outside the chain. These cells
will be replicated and folded into the $reduce_* cell, but the original
cell will remain, driving its original loads.

G.69 extractinv - extract explicit inverter cells for invertible cell pins

extractinv [options] [selection]

Searches the design for all cells with invertible pins controlled by a cell
parameter (eg. IS_CLK_INVERTED on many Xilinx cells) and removes the parameter.
If the parameter was set to 1, inserts an explicit inverter cell in front of
the pin instead. Normally used for output to ISE, which does not support the
inversion parameters.

To mark a cell port as invertible, use (* invertible_pin = "param_name" *)
on the wire in the blackbox module. The parameter value should have
the same width as the port, and will be effectively XORed with it.

-inv <celltype> <portname_out>:<portname_in>
Specifies the cell type to use for the inverters and its port names.
This option is required.

G.70 flatten - flatten design

flatten [options] [selection]

This pass flattens the design by replacing cells by their implementation. This
pass is very similar to the 'techmap' pass. The only difference is that this
pass is using the current design as mapping library.

Cells and/or modules with the 'keep_hierarchy' attribute set will not be
flattened by this command.

-wb
Ignore the 'whitebox' attribute on cell implementations.

178 Appendix G. Command line reference

YosysHQ Yosys

G.71 flowmap - pack LUTs with FlowMap

flowmap [options] [selection]

This pass uses the FlowMap technology mapping algorithm to pack logic gates
into k-LUTs with optimal depth. It allows mapping any circuit elements that can
be evaluated with the `eval` pass, including cells with multiple output ports
and multi-bit input and output ports.

-maxlut k
perform technology mapping for a k-LUT architecture. if not specified,
defaults to 3.

-minlut n
only produce n-input or larger LUTs. if not specified, defaults to 1.

-cells <cell>[,<cell>,...]
map specified cells. if not specified, maps $_NOT_, $_AND_, $_OR_,
$_XOR_ and $_MUX_, which are the outputs of the `simplemap` pass.

-relax
perform depth relaxation and area minimization.

-r-alpha n, -r-beta n, -r-gamma n
parameters of depth relaxation heuristic potential function.
if not specified, alpha=8, beta=2, gamma=1.

-optarea n
optimize for area by trading off at most n logic levels for fewer LUTs.
n may be zero, to optimize for area without increasing depth.
implies -relax.

-debug
dump intermediate graphs.

-debug-relax
explain decisions performed during depth relaxation.

G.72 fmcombine - combine two instances of a cell into one

fmcombine [options] module_name gold_cell gate_cell

This pass takes two cells, which are instances of the same module, and replaces
them with one instance of a special 'combined' module, that effectively
contains two copies of the original module, plus some formal properties.

This is useful for formal test benches that check what differences in behavior
a slight difference in input causes in a module.

-initeq
(continues on next page)

G.71. flowmap - pack LUTs with FlowMap 179

YosysHQ Yosys

(continued from previous page)

Insert assumptions that initially all FFs in both circuits have the
same initial values.

-anyeq
Do not duplicate $anyseq/$anyconst cells.

-fwd
Insert forward hint assumptions into the combined module.

-bwd
Insert backward hint assumptions into the combined module.
(Backward hints are logically equivalend to fordward hits, but
some solvers are faster with bwd hints, or even both -bwd and -fwd.)

-nop
Don't insert hint assumptions into the combined module.
(This should not provide any speedup over the original design, but
strangely sometimes it does.)

If none of -fwd, -bwd, and -nop is given, then -fwd is used as default.

G.73 fminit - set init values/sequences for formal

fminit [options] <selection>

This pass creates init constraints (for example for reset sequences) in a formal
model.

-seq <signal> <sequence>
Set sequence using comma-separated list of values, use 'z for
unconstrained bits. The last value is used for the remainder of the
trace.

-set <signal> <value>
Add constant value constraint

-posedge <signal>
-negedge <signal>

Set clock for init sequences

180 Appendix G. Command line reference

YosysHQ Yosys

G.74 formalff - prepare FFs for formal

formalff [options] [selection]

This pass transforms clocked flip-flops to prepare a design for formal
verification. If a design contains latches and/or multiple different clocks run
the async2sync or clk2fflogic passes before using this pass.

-clk2ff
Replace all clocked flip-flops with $ff cells that use the implicit
global clock. This assumes, without checking, that the design uses a
single global clock. If that is not the case, the clk2fflogic pass
should be used instead.

-ff2anyinit
Replace uninitialized bits of $ff cells with $anyinit cells. An
$anyinit cell behaves exactly like an $ff cell with an undefined
initialization value. The difference is that $anyinit inhibits
don't-care optimizations and is used to track solver-provided values
in witness traces.

If combined with -clk2ff this also affects newly created $ff cells.

-anyinit2ff
Replaces $anyinit cells with uninitialized $ff cells. This performs the
reverse of -ff2anyinit and can be used, before running a backend pass
(or similar) that is not yet aware of $anyinit cells.

Note that after running -anyinit2ff, in general, performing don't-care
optimizations is not sound in a formal verification setting.

-fine
Emit fine-grained $_FF_ cells instead of coarse-grained $ff cells for
-anyinit2ff. Cannot be combined with -clk2ff or -ff2anyinit.

-setundef
Find FFs with undefined initialization values for which changing the
initialization does not change the observable behavior and initialize
them. For -ff2anyinit, this reduces the number of generated $anyinit
cells that drive wires with private names.

-hierarchy
Propagates the 'replaced_by_gclk' attribute set by clk2ff upwards
through the design hierarchy towards the toplevel inputs. This option
works on the whole design and ignores the selection.

-assume
Add assumptions that constrain wires with the 'replaced_by_gclk'
attribute to the value they would have before an active clock edge.

G.74. formalff - prepare FFs for formal 181

YosysHQ Yosys

G.75 freduce - perform functional reduction

freduce [options] [selection]

This pass performs functional reduction in the circuit. I.e. if two nodes are
equivalent, they are merged to one node and one of the redundant drivers is
disconnected. A subsequent call to 'clean' will remove the redundant drivers.

-v, -vv
enable verbose or very verbose output

-inv
enable explicit handling of inverted signals

-stop <n>
stop after <n> reduction operations. this is mostly used for
debugging the freduce command itself.

-dump <prefix>
dump the design to <prefix>_<module>_<num>.il after each reduction
operation. this is mostly used for debugging the freduce command.

This pass is undef-aware, i.e. it considers don't-care values for detecting
equivalent nodes.

All selected wires are considered for rewiring. The selected cells cover the
circuit that is analyzed.

G.76 fsm - extract and optimize finite state machines

fsm [options] [selection]

This pass calls all the other fsm_* passes in a useful order. This performs
FSM extraction and optimization. It also calls opt_clean as needed:

fsm_detect unless got option -nodetect
fsm_extract

fsm_opt
opt_clean
fsm_opt

fsm_expand if got option -expand
opt_clean if got option -expand
fsm_opt if got option -expand

fsm_recode unless got option -norecode

fsm_info

(continues on next page)

182 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

fsm_export if got option -export
fsm_map unless got option -nomap

Options:

-expand, -norecode, -export, -nomap
enable or disable passes as indicated above

-fullexpand
call expand with -full option

-encoding type
-fm_set_fsm_file file
-encfile file

passed through to fsm_recode pass

This pass uses a subset of FF types to detect FSMs. Run 'opt -nosdff -nodffe'
before this pass to prepare the design.

The Verific frontend may merge multiplexers in a way that interferes with FSM
detection. Run 'verific -cfg db_infer_wide_muxes_post_elaboration 0' before
reading the source, and 'bmuxmap' after 'proc' for best results.

G.77 fsm_detect - finding FSMs in design

fsm_detect [options] [selection]

This pass detects finite state machines by identifying the state signal.
The state signal is then marked by setting the attribute 'fsm_encoding'
on the state signal to "auto".

-ignore-self-reset
Mark FSMs even if they are self-resetting

Existing 'fsm_encoding' attributes are not changed by this pass.

Signals can be protected from being detected by this pass by setting the
'fsm_encoding' attribute to "none".

This pass uses a subset of FF types to detect FSMs. Run 'opt -nosdff -nodffe'
before this pass to prepare the design for fsm_detect.

The Verific frontend may optimize the design in a way that interferes with FSM
detection. Run 'verific -cfg db_infer_wide_muxes_post_elaboration 0' before
reading the source, and 'bmuxmap -pmux' after 'proc' for best results.

G.77. fsm_detect - finding FSMs in design 183

YosysHQ Yosys

G.78 fsm_expand - expand FSM cells by merging logic into it

fsm_expand [-full] [selection]

The fsm_extract pass is conservative about the cells that belong to a finite
state machine. This pass can be used to merge additional auxiliary gates into
the finite state machine.

By default, fsm_expand is still a bit conservative regarding merging larger
word-wide cells. Call with -full to consider all cells for merging.

G.79 fsm_export - exporting FSMs to KISS2 files

fsm_export [-noauto] [-o filename] [-origenc] [selection]

This pass creates a KISS2 file for every selected FSM. For FSMs with the
'fsm_export' attribute set, the attribute value is used as filename, otherwise
the module and cell name is used as filename. If the parameter '-o' is given,
the first exported FSM is written to the specified filename. This overwrites
the setting as specified with the 'fsm_export' attribute. All other FSMs are
exported to the default name as mentioned above.

-noauto
only export FSMs that have the 'fsm_export' attribute set

-o filename
filename of the first exported FSM

-origenc
use binary state encoding as state names instead of s0, s1, ...

G.80 fsm_extract - extracting FSMs in design

fsm_extract [selection]

This pass operates on all signals marked as FSM state signals using the
'fsm_encoding' attribute. It consumes the logic that creates the state signal
and uses the state signal to generate control signal and replaces it with an
FSM cell.

The generated FSM cell still generates the original state signal with its
original encoding. The 'fsm_opt' pass can be used in combination with the
'opt_clean' pass to eliminate this signal.

184 Appendix G. Command line reference

YosysHQ Yosys

G.81 fsm_info - print information on finite state machines

fsm_info [selection]

This pass dumps all internal information on FSM cells. It can be useful for
analyzing the synthesis process and is called automatically by the 'fsm'
pass so that this information is included in the synthesis log file.

G.82 fsm_map - mapping FSMs to basic logic

fsm_map [selection]

This pass translates FSM cells to flip-flops and logic.

G.83 fsm_opt - optimize finite state machines

fsm_opt [selection]

This pass optimizes FSM cells. It detects which output signals are actually
not used and removes them from the FSM. This pass is usually used in
combination with the 'opt_clean' pass (see also 'help fsm').

G.84 fsm_recode - recoding finite state machines

fsm_recode [options] [selection]

This pass reassign the state encodings for FSM cells. At the moment only
one-hot encoding and binary encoding is supported.

-encoding <type>
specify the encoding scheme used for FSMs without the
'fsm_encoding' attribute or with the attribute set to `auto'.

-fm_set_fsm_file <file>
generate a file containing the mapping from old to new FSM encoding
in form of Synopsys Formality set_fsm_* commands.

-encfile <file>
write the mappings from old to new FSM encoding to a file in the
following format:

.fsm <module_name> <state_signal>

.map <old_bitpattern> <new_bitpattern>

G.81. fsm_info - print information on finite state machines 185

YosysHQ Yosys

G.85 fst2tb - generate testbench out of fst file

fst2tb [options] [top-level]

This command generates testbench for the circuit using the given top-level
module and simulus signal from FST file

-tb <name>
generated testbench name.
files <name>.v and <name>.txt are created as result.

-r <filename>
read simulation FST file

-clock <portname>
name of top-level clock input

-clockn <portname>
name of top-level clock input (inverse polarity)

-scope <name>
scope of simulation top model

-start <time>
start co-simulation in arbitary time (default 0)

-stop <time>
stop co-simulation in arbitary time (default END)

-n <integer>
number of clock cycles to simulate (default: 20)

G.86 future - resolve future sampled value functions

future [options] [selection]

G.87 gatemate_foldinv - fold inverters into Gatemate LUT trees

gatemate_foldinv [selection]

This pass searches for $__CC_NOT cells and folds them into CC_LUT2, CC_L2T4
and CC_L2T5 cells as created by LUT tree mapping.

186 Appendix G. Command line reference

YosysHQ Yosys

G.88 glift - create GLIFT models and optimization problems

glift <command> [options] [selection]

Augments the current or specified module with gate-level information flow
tracking (GLIFT) logic using the "constructive mapping" approach. Also can set
up QBF-SAT optimization problems in order to optimize GLIFT models or trade off
precision and complexity.

Commands:

-create-precise-model
Replaces the current or specified module with one that has corresponding
"taint" inputs, outputs, and internal nets along with precise taint
tracking logic. For example, precise taint tracking logic for an AND gate
is:

y_t = a & b_t | b & a_t | a_t & b_t

-create-imprecise-model
Replaces the current or specified module with one that has corresponding
"taint" inputs, outputs, and internal nets along with imprecise "All OR"
taint tracking logic:

y_t = a_t | b_t

-create-instrumented-model
Replaces the current or specified module with one that has corresponding
"taint" inputs, outputs, and internal nets along with 4 varying-precision
versions of taint tracking logic. Which version of taint tracking logic is
used for a given gate is determined by a MUX selected by an $anyconst cell.
By default, unless the `-no-cost-model` option is provided, an additional
wire named `__glift_weight` with the `keep` and `minimize` attributes is
added to the module along with pmuxes and adders to calculate a rough
estimate of the number of logic gates in the GLIFT model given an assignment
for the $anyconst cells. The four versions of taint tracking logic for an
AND gate are:
y_t = a & b_t | b & a_t | a_t & b_t (like `-create-precise-model`)
y_t = a_t | a & b_t
y_t = b_t | b & a_t
y_t = a_t | b_t (like `-create-imprecise-model`)

Options:

-taint-constants
Constant values in the design are labeled as tainted.
(default: label constants as un-tainted)

(continues on next page)

G.88. glift - create GLIFT models and optimization problems 187

YosysHQ Yosys

(continued from previous page)

-keep-outputs
Do not remove module outputs. Taint tracking outputs will appear in the
module ports alongside the orignal outputs.
(default: original module outputs are removed)

-simple-cost-model
Do not model logic area. Instead model the number of non-zero assignments to
$anyconsts. Taint tracking logic versions vary in their size, but all
reduced-precision versions are significantly smaller than the fully-precise
version. A non-zero $anyconst assignment means that reduced-precision taint
tracking logic was chosen for some gate. Only applicable in combination with
`-create-instrumented-model`. (default: use a complex model and give that
wire the "keep" and "minimize" attributes)

-no-cost-model
Do not model taint tracking logic area and do not create a `__glift_weight`
wire. Only applicable in combination with `-create-instrumented-model`.
(default: model area and give that wire the "keep" and "minimize"
attributes)

-instrument-more
Allow choice from more versions of (even simpler) taint tracking logic. A
total of 8 versions of taint tracking logic will be added per gate,
including the 4 versions from `-create-instrumented-model` and these
additional versions:

y_t = a_t
y_t = b_t
y_t = 1
y_t = 0

Only applicable in combination with `-create-instrumented-model`.
(default: do not add more versions of taint tracking logic.

G.89 greenpak4_dffinv - merge greenpak4 inverters and DFF/latches

greenpak4_dffinv [options] [selection]

Merge GP_INV cells with GP_DFF* and GP_DLATCH* cells.

188 Appendix G. Command line reference

YosysHQ Yosys

G.90 help - display help messages

help list all commands
help <command> print help message for given command
help -all print complete command reference

help -cells list all cell types
help <celltype> print help message for given cell type
help <celltype>+ print verilog code for given cell type

G.91 hierarchy - check, expand and clean up design hierarchy

hierarchy [-check] [-top <module>]
hierarchy -generate <cell-types> <port-decls>

In parametric designs, a module might exists in several variations with
different parameter values. This pass looks at all modules in the current
design and re-runs the language frontends for the parametric modules as
needed. It also resolves assignments to wired logic data types (wand/wor),
resolves positional module parameters, unrolls array instances, and more.

-check
also check the design hierarchy. this generates an error when
an unknown module is used as cell type.

-simcheck
like -check, but also throw an error if blackbox modules are
instantiated, and throw an error if the design has no top module.

-smtcheck
like -simcheck, but allow smtlib2_module modules.

-purge_lib
by default the hierarchy command will not remove library (blackbox)
modules. use this option to also remove unused blackbox modules.

-libdir <directory>
search for files named <module_name>.v in the specified directory
for unknown modules and automatically run read_verilog for each
unknown module.

-keep_positionals
per default this pass also converts positional arguments in cells
to arguments using port names. This option disables this behavior.

-keep_portwidths
per default this pass adjusts the port width on cells that are
module instances when the width does not match the module port. This
option disables this behavior.

(continues on next page)

G.90. help - display help messages 189

YosysHQ Yosys

(continued from previous page)

-nodefaults
do not resolve input port default values

-nokeep_asserts
per default this pass sets the "keep" attribute on all modules
that directly or indirectly contain one or more formal properties.
This option disables this behavior.

-top <module>
use the specified top module to build the design hierarchy. Modules
outside this tree (unused modules) are removed.

when the -top option is used, the 'top' attribute will be set on the
specified top module. otherwise a module with the 'top' attribute set
will implicitly be used as top module, if such a module exists.

-auto-top
automatically determine the top of the design hierarchy and mark it.

-chparam name value
elaborate the top module using this parameter value. Modules on which
this parameter does not exist may cause a warning message to be output.
This option can be specified multiple times to override multiple
parameters. String values must be passed in double quotes (").

In -generate mode this pass generates blackbox modules for the given cell
types (wildcards supported). For this the design is searched for cells that
match the given types and then the given port declarations are used to
determine the direction of the ports. The syntax for a port declaration is:

{i|o|io}[@<num>]:<portname>

Input ports are specified with the 'i' prefix, output ports with the 'o'
prefix and inout ports with the 'io' prefix. The optional <num> specifies
the position of the port in the parameter list (needed when instantiated
using positional arguments). When <num> is not specified, the <portname> can
also contain wildcard characters.

This pass ignores the current selection and always operates on all modules
in the current design.

G.92 hilomap - technology mapping of constant hi- and/or lo-drivers

hilomap [options] [selection]

Map constants to 'tielo' and 'tiehi' driver cells.

-hicell <celltype> <portname>
Replace constant hi bits with this cell.

(continues on next page)

190 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-locell <celltype> <portname>
Replace constant lo bits with this cell.

-singleton
Create only one hi/lo cell and connect all constant bits
to that cell. Per default a separate cell is created for
each constant bit.

G.93 history - show last interactive commands

history

This command prints all commands in the shell history buffer. This are
all commands executed in an interactive session, but not the commands
from executed scripts.

G.94 ice40_braminit - iCE40: perform SB_RAM40_4K initialization
from file

ice40_braminit

This command processes all SB_RAM40_4K blocks with a non-empty INIT_FILE
parameter and converts it into the required INIT_x attributes

G.95 ice40_dsp - iCE40: map multipliers

ice40_dsp [options] [selection]

Map multipliers ($mul/SB_MAC16) and multiply-accumulate ($mul/SB_MAC16 + $add)
cells into iCE40 DSP resources.
Currently, only the 16x16 multiply mode is supported and not the 2 x 8x8 mode.

Pack input registers (A, B, {C,D}; with optional hold), pipeline registers
({F,J,K,G}, H), output registers (O -- full 32-bits or lower 16-bits only; with
optional hold), and post-adder into into the SB_MAC16 resource.

Multiply-accumulate operations using the post-adder with feedback on the {C,D}
input will be folded into the DSP. In this scenario only, resetting the
the accumulator to an arbitrary value can be inferred to use the {C,D} input.

G.93. history - show last interactive commands 191

YosysHQ Yosys

G.96 ice40_opt - iCE40: perform simple optimizations

ice40_opt [options] [selection]

This command executes the following script:

do
<ice40 specific optimizations>
opt_expr -mux_undef -undriven [-full]
opt_merge
opt_dff
opt_clean

while <changed design>

G.97 ice40_wrapcarry - iCE40: wrap carries

ice40_wrapcarry [selection]

Wrap manually instantiated SB_CARRY cells, along with their associated SB_LUT4s,
into an internal $__ICE40_CARRY_WRAPPER cell for preservation across technology
mapping.

Attributes on both cells will have their names prefixed with 'SB_CARRY.' or
'SB_LUT4.' and attached to the wrapping cell.
A (* keep *) attribute on either cell will be logically OR-ed together.

-unwrap
unwrap $__ICE40_CARRY_WRAPPER cells back into SB_CARRYs and SB_LUT4s,
including restoring their attributes.

G.98 insbuf - insert buffer cells for connected wires

insbuf [options] [selection]

Insert buffer cells into the design for directly connected wires.

-buf <celltype> <in-portname> <out-portname>
Use the given cell type instead of $_BUF_. (Notice that the next
call to "clean" will remove all $_BUF_ in the design.)

-chain
Chain buffer cells

192 Appendix G. Command line reference

YosysHQ Yosys

G.99 iopadmap - technology mapping of i/o pads (or buffers)

iopadmap [options] [selection]

Map module inputs/outputs to PAD cells from a library. This pass
can only map to very simple PAD cells. Use 'techmap' to further map
the resulting cells to more sophisticated PAD cells.

-inpad <celltype> <in_port>[:<ext_port>]
Map module input ports to the given cell type with the
given output port name. if a 2nd portname is given, the
signal is passed through the pad cell, using the 2nd
portname as the port facing the module port.

-outpad <celltype> <out_port>[:<ext_port>]
-inoutpad <celltype> <io_port>[:<ext_port>]

Similar to -inpad, but for output and inout ports.

-toutpad <celltype> <oe_port>:<out_port>[:<ext_port>]
Merges $_TBUF_ cells into the output pad cell. This takes precedence
over the other -outpad cell. The first portname is the enable input
of the tristate driver, which can be prefixed with `~` for negative
polarity enable.

-tinoutpad <celltype> <oe_port>:<in_port>:<out_port>[:<ext_port>]
Merges $_TBUF_ cells into the inout pad cell. This takes precedence
over the other -inoutpad cell. The first portname is the enable input
of the tristate driver and the 2nd portname is the internal output
buffering the external signal. Like with `-toutpad`, the enable can
be marked as negative polarity by prefixing the name with `~`.

-ignore <celltype> <portname>[:<portname>]*
Skips mapping inputs/outputs that are already connected to given
ports of the given cell. Can be used multiple times. This is in
addition to the cells specified as mapping targets.

-widthparam <param_name>
Use the specified parameter name to set the port width.

-nameparam <param_name>
Use the specified parameter to set the port name.

-bits
create individual bit-wide buffers even for ports that
are wider. (the default behavior is to create word-wide
buffers using -widthparam to set the word size on the cell.)

Tristate PADS (-toutpad, -tinoutpad) always operate in -bits mode.

G.99. iopadmap - technology mapping of i/o pads (or buffers) 193

YosysHQ Yosys

G.100 jny - write design and metadata

jny [options] [selection]

Write JSON netlist metadata for the current design

-o <filename>
write to the specified file.

-no-connections
Don't include connection information in the netlist output.

-no-attributes
Don't include attributed information in the netlist output.

-no-properties
Don't include property information in the netlist output.

See 'help write_jny' for a description of the JSON format used.

G.101 json - write design in JSON format

json [options] [selection]

Write a JSON netlist of all selected objects.

-o <filename>
write to the specified file.

-aig
also include AIG models for the different gate types

-compat-int
emit 32-bit or smaller fully-defined parameter values directly
as JSON numbers (for compatibility with old parsers)

See 'help write_json' for a description of the JSON format used.

G.102 lattice_gsr - Lattice: handle GSR

lattice_gsr [options] [selection]

Trim active low async resets connected to GSR and resolve GSR parameter,
if a GSR or SGSR primitive is used in the design.

If any cell has the GSR parameter set to "AUTO", this will be resolved
to "ENABLED" if a GSR primitive is present and the (* nogsr *) attribute
is not set, otherwise it will be resolved to "DISABLED".

194 Appendix G. Command line reference

YosysHQ Yosys

G.103 log - print text and log files

log string

Print the given string to the screen and/or the log file. This is useful for TCL
scripts, because the TCL command "puts" only goes to stdout but not to
logfiles.

-stdout
Print the output to stdout too. This is useful when all Yosys is
executed with a script and the -q (quiet operation) argument to notify
the user.

-stderr
Print the output to stderr too.

-nolog
Don't use the internal log() command. Use either -stdout or -stderr,
otherwise no output will be generated at all.

-n
do not append a newline

G.104 logger - set logger properties

logger [options]

This command sets global logger properties, also available using command line
options.

-[no]time
enable/disable display of timestamp in log output.

-[no]stderr
enable/disable logging errors to stderr.

-warn regex
print a warning for all log messages matching the regex.

-nowarn regex
if a warning message matches the regex, it is printed as regular
message instead.

-werror regex
if a warning message matches the regex, it is printed as error
message instead and the tool terminates with a nonzero return code.

-[no]debug
globally enable/disable debug log messages.

(continues on next page)

G.103. log - print text and log files 195

YosysHQ Yosys

(continued from previous page)

-experimental <feature>
do not print warnings for the specified experimental feature

-expect <type> <regex> <expected_count>
expect log, warning or error to appear. matched errors will terminate
with exit code 0.

-expect-no-warnings
gives error in case there is at least one warning that is not expected.

-check-expected
verifies that the patterns previously set up by -expect have actually
been met, then clears the expected log list. If this is not called
manually, the check will happen at yosys exist time instead.

G.105 ls - list modules or objects in modules

ls [selection]

When no active module is selected, this prints a list of modules.

When an active module is selected, this prints a list of objects in the module.

G.106 ltp - print longest topological path

ltp [options] [selection]

This command prints the longest topological path in the design. (Only considers
paths within a single module, so the design must be flattened.)

-noff
automatically exclude FF cell types

G.107 lut2mux - convert $lut to $_MUX_

lut2mux [options] [selection]

This pass converts $lut cells to $_MUX_ gates.

196 Appendix G. Command line reference

YosysHQ Yosys

G.108 maccmap - mapping macc cells

maccmap [-unmap] [selection]

This pass maps $macc cells to yosys $fa and $alu cells. When the -unmap option
is used then the $macc cell is mapped to $add, $sub, etc. cells instead.

G.109 memory - translate memories to basic cells

memory [-norom] [-nomap] [-nordff] [-nowiden] [-nosat] [-memx] [-no-rw-check] [-bram
→˓<bram_rules>] [selection]

This pass calls all the other memory_* passes in a useful order:

opt_mem
opt_mem_priority
opt_mem_feedback
memory_bmux2rom (skipped if called with -norom)
memory_dff [-no-rw-check] (skipped if called with -nordff or -memx)
opt_clean
memory_share [-nowiden] [-nosat]
opt_mem_widen
memory_memx (when called with -memx)
opt_clean
memory_collect
memory_bram -rules <bram_rules> (when called with -bram)
memory_map (skipped if called with -nomap)

This converts memories to word-wide DFFs and address decoders
or multiport memory blocks if called with the -nomap option.

G.110 memory_bmux2rom - convert muxes to ROMs

memory_bmux2rom [options] [selection]

This pass converts $bmux cells with constant A input to ROMs.

G.111 memory_bram - map memories to block rams

memory_bram -rules <rule_file> [selection]

This pass converts the multi-port $mem memory cells into block ram instances.
The given rules file describes the available resources and how they should be
used.

(continues on next page)

G.108. maccmap - mapping macc cells 197

YosysHQ Yosys

(continued from previous page)

The rules file contains configuration options, a set of block ram description
and a sequence of match rules.

The option 'attr_icase' configures how attribute values are matched. The value 0
means case-sensitive, 1 means case-insensitive.

A block ram description looks like this:

bram RAMB1024X32 # name of BRAM cell
init 1 # set to '1' if BRAM can be initialized
abits 10 # number of address bits
dbits 32 # number of data bits
groups 2 # number of port groups
ports 1 1 # number of ports in each group
wrmode 1 0 # set to '1' if this groups is write ports
enable 4 1 # number of enable bits
transp 0 2 # transparent (for read ports)
clocks 1 2 # clock configuration
clkpol 2 2 # clock polarity configuration

endbram

For the option 'transp' the value 0 means non-transparent, 1 means transparent
and a value greater than 1 means configurable. All groups with the same
value greater than 1 share the same configuration bit.

For the option 'clocks' the value 0 means non-clocked, and a value greater
than 0 means clocked. All groups with the same value share the same clock
signal.

For the option 'clkpol' the value 0 means negative edge, 1 means positive edge
and a value greater than 1 means configurable. All groups with the same value
greater than 1 share the same configuration bit.

Using the same bram name in different bram blocks will create different variants
of the bram. Verilog configuration parameters for the bram are created as
needed.

It is also possible to create variants by repeating statements in the bram block
and appending '@<label>' to the individual statements.

A match rule looks like this:

match RAMB1024X32
max waste 16384 # only use this bram if <= 16k ram bits are unused
min efficiency 80 # only use this bram if efficiency is at least 80%

endmatch

It is possible to match against the following values with min/max rules:

words number of words in memory in design
abits number of address bits on memory in design
dbits number of data bits on memory in design

(continues on next page)

198 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

wports number of write ports on memory in design
rports number of read ports on memory in design
ports number of ports on memory in design
bits number of bits in memory in design
dups number of duplications for more read ports

awaste number of unused address slots for this match
dwaste number of unused data bits for this match
bwaste number of unused bram bits for this match
waste total number of unused bram bits (bwaste*dups)
efficiency ... total percentage of used and non-duplicated bits

acells number of cells in 'address-direction'
dcells number of cells in 'data-direction'
cells total number of cells (acells*dcells*dups)

A match containing the command 'attribute' followed by a list of space
separated 'name[=string_value]' values requires that the memory contains any
one of the given attribute name and string values (where specified), or name
and integer 1 value (if no string_value given, since Verilog will interpret
'(* attr *)' as '(* attr=1 *)').
A name prefixed with '!' indicates that the attribute must not exist.

The interface for the created bram instances is derived from the bram
description. Use 'techmap' to convert the created bram instances into
instances of the actual bram cells of your target architecture.

A match containing the command 'or_next_if_better' is only used if it
has a higher efficiency than the next match (and the one after that if
the next also has 'or_next_if_better' set, and so forth).

A match containing the command 'make_transp' will add external circuitry
to simulate 'transparent read', if necessary.

A match containing the command 'make_outreg' will add external flip-flops
to implement synchronous read ports, if necessary.

A match containing the command 'shuffle_enable A' will re-organize
the data bits to accommodate the enable pattern of port A.

G.111. memory_bram - map memories to block rams 199

YosysHQ Yosys

G.112 memory_collect - creating multi-port memory cells

memory_collect [selection]

This pass collects memories and memory ports and creates generic multiport
memory cells.

G.113 memory_dff - merge input/output DFFs into memory read ports

memory_dff [-no-rw-check] [selection]

This pass detects DFFs at memory read ports and merges them into the memory
port. I.e. it consumes an asynchronous memory port and the flip-flops at its
interface and yields a synchronous memory port.

-no-rw-check
marks all recognized read ports as "return don't-care value on
read/write collision" (same result as setting the no_rw_check
attribute on all memories).

G.114 memory_libmap - map memories to cells

memory_libmap -lib <library_file> [-D <condition>] [selection]

This pass takes a description of available RAM cell types and maps
all selected memories to one of them, or leaves them to be mapped to FFs.

-lib <library_file>
Selects a library file containing RAM cell definitions. This option
can be passed more than once to select multiple libraries.
See passes/memory/memlib.md for description of the library format.

-D <condition>
Enables a condition that can be checked within the library file
to eg. select between slightly different hardware variants.
This option can be passed any number of times.

-logic-cost-rom <num>
-logic-cost-ram <num>
Sets the cost of a single bit for memory lowered to soft logic.

-no-auto-distributed
-no-auto-block
-no-auto-huge
Disables automatic mapping of given kind of RAMs. Manual mapping
(using ram_style or other attributes) is still supported.

200 Appendix G. Command line reference

YosysHQ Yosys

G.115 memory_map - translate multiport memories to basic cells

memory_map [options] [selection]

This pass converts multiport memory cells as generated by the memory_collect
pass to word-wide DFFs and address decoders.

-attr !<name>
do not map memories that have attribute <name> set.

-attr <name>[=<value>]
for memories that have attribute <name> set, only map them if its value
is a string <value> (if specified), or an integer 1 (otherwise). if this
option is specified multiple times, map the memory if the attribute is
to any of the values.

-iattr
for -attr, ignore case of <value>.

-rom-only
only perform conversion for ROMs (memories with no write ports).

-keepdc
when mapping ROMs, keep x-bits shared across read ports.

-formal
map memories for a global clock based formal verification flow.
This implies -keepdc, uses $ff cells for ROMs and sets hdlname
attributes. It also has limited support for async write ports
as generated by clk2fflogic.

G.116 memory_memx - emulate vlog sim behavior for mem ports

memory_memx [selection]

This pass adds additional circuitry that emulates the Verilog simulation
behavior for out-of-bounds memory reads and writes.

G.117 memory_narrow - split up wide memory ports

memory_narrow [options] [selection]

This pass splits up wide memory ports into several narrow ports.

G.115. memory_map - translate multiport memories to basic cells 201

YosysHQ Yosys

G.118 memory_nordff - extract read port FFs from memories

memory_nordff [options] [selection]

This pass extracts FFs from memory read ports. This results in a netlist
similar to what one would get from not calling memory_dff.

G.119 memory_share - consolidate memory ports

memory_share [-nosat] [-nowiden] [selection]

This pass merges share-able memory ports into single memory ports.

The following methods are used to consolidate the number of memory ports:

- When multiple write ports access the same address then this is converted
to a single write port with a more complex data and/or enable logic path.

- When multiple read or write ports access adjacent aligned addresses, they
are merged to a single wide read or write port. This transformation can be
disabled with the "-nowiden" option.

- When multiple write ports are never accessed at the same time (a SAT
solver is used to determine this), then the ports are merged into a single
write port. This transformation can be disabled with the "-nosat" option.

Note that in addition to the algorithms implemented in this pass, the $memrd
and $memwr cells are also subject to generic resource sharing passes (and other
optimizations) such as "share" and "opt_merge".

G.120 memory_unpack - unpack multi-port memory cells

memory_unpack [selection]

This pass converts the multi-port $mem memory cells into individual $memrd and
$memwr cells. It is the counterpart to the memory_collect pass.

G.121 miter - automatically create a miter circuit

miter -equiv [options] gold_name gate_name miter_name

Creates a miter circuit for equivalence checking. The gold- and gate- modules
must have the same interfaces. The miter circuit will have all inputs of the
two source modules, prefixed with 'in_'. The miter circuit has a 'trigger'
output that goes high if an output mismatch between the two source modules is

(continues on next page)

202 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

detected.

-ignore_gold_x
a undef (x) bit in the gold module output will match any value in
the gate module output.

-make_outputs
also route the gold- and gate-outputs to 'gold_*' and 'gate_*' outputs
on the miter circuit.

-make_outcmp
also create a cmp_* output for each gold/gate output pair.

-make_assert
also create an 'assert' cell that checks if trigger is always low.

-make_cover
also create a 'cover' cell for each gold/gate output pair.

-flatten
call 'flatten -wb; opt_expr -keepdc -undriven;;' on the miter circuit.

-cross
allow output ports on the gold module to match input ports on the
gate module. This is useful when the gold module contains additional
logic to drive some of the gate module inputs.

miter -assert [options] module [miter_name]

Creates a miter circuit for property checking. All input ports are kept,
output ports are discarded. An additional output 'trigger' is created that
goes high when an assert is violated. Without a miter_name, the existing
module is modified.

-make_outputs
keep module output ports.

-flatten
call 'flatten -wb; opt_expr -keepdc -undriven;;' on the miter circuit.

G.121. miter - automatically create a miter circuit 203

YosysHQ Yosys

G.122 mutate - generate or apply design mutations

mutate -list N [options] [selection]

Create a list of N mutations using an even sampling.

-o filename
Write list to this file instead of console output

-s filename
Write a list of all src tags found in the design to the specified file

-seed N
RNG seed for selecting mutations

-none
Include a "none" mutation in the output

-ctrl name width value
Add -ctrl options to the output. Use 'value' for first mutation, then
simply count up from there.

-mode name
-module name
-cell name
-port name
-portbit int
-ctrlbit int
-wire name
-wirebit int
-src string

Filter list of mutation candidates to those matching
the given parameters.

-cfg option int
Set a configuration option. Options available:
weight_pq_w weight_pq_b weight_pq_c weight_pq_s
weight_pq_mw weight_pq_mb weight_pq_mc weight_pq_ms
weight_cover pick_cover_prcnt

mutate -mode MODE [options]

Apply the given mutation.

-ctrl name width value
Add a control signal with the given name and width. The mutation is
activated if the control signal equals the given value.

-module name
-cell name
-port name

(continues on next page)

204 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-portbit int
-ctrlbit int

Mutation parameters, as generated by 'mutate -list N'.

-wire name
-wirebit int
-src string

Ignored. (They are generated by -list for documentation purposes.)

G.123 muxcover - cover trees of MUX cells with wider MUXes

muxcover [options] [selection]

Cover trees of $_MUX_ cells with $_MUX{4,8,16}_ cells

-mux4[=cost], -mux8[=cost], -mux16[=cost]
Cover $_MUX_ trees using the specified types of MUXes (with optional
integer costs). If none of these options are given, the effect is the
same as if all of them are.
Default costs: $_MUX4_ = 220, $_MUX8_ = 460,

$_MUX16_ = 940

-mux2=cost
Use the specified cost for $_MUX_ cells when making covering decisions.
Default cost: $_MUX_ = 100

-dmux=cost
Use the specified cost for $_MUX_ cells used in decoders.
Default cost: 90

-nodecode
Do not insert decoder logic. This reduces the number of possible
substitutions, but guarantees that the resulting circuit is not
less efficient than the original circuit.

-nopartial
Do not consider mappings that use $_MUX<N>_ to select from less
than <N> different signals.

G.124 muxpack - $mux/$pmux cascades to $pmux

muxpack [selection]

This pass converts cascaded chains of $pmux cells (e.g. those create from case
constructs) and $mux cells (e.g. those created by if-else constructs) into
$pmux cells.

(continues on next page)

G.123. muxcover - cover trees of MUX cells with wider MUXes 205

YosysHQ Yosys

(continued from previous page)

This optimisation is conservative --- it will only pack $mux or $pmux cells
whose select lines are driven by '$eq' cells with other such cells if it can be
certain that their select inputs are mutually exclusive.

G.125 nlutmap - map to LUTs of different sizes

nlutmap [options] [selection]

This pass uses successive calls to 'abc' to map to an architecture. That
provides a small number of differently sized LUTs.

-luts N_1,N_2,N_3,...
The number of LUTs with 1, 2, 3, ... inputs that are
available in the target architecture.

-assert
Create an error if not all logic can be mapped

Excess logic that does not fit into the specified LUTs is mapped back
to generic logic gates ($_AND_, etc.).

G.126 onehot - optimize $eq cells for onehot signals

onehot [options] [selection]

This pass optimizes $eq cells that compare one-hot signals against constants

-v, -vv
verbose output

G.127 opt - perform simple optimizations

opt [options] [selection]

This pass calls all the other opt_* passes in a useful order. This performs
a series of trivial optimizations and cleanups. This pass executes the other
passes in the following order:

opt_expr [-mux_undef] [-mux_bool] [-undriven] [-noclkinv] [-fine] [-full] [-keepdc]
opt_merge [-share_all] -nomux

do
opt_muxtree
opt_reduce [-fine] [-full]
opt_merge [-share_all]

(continues on next page)

206 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

opt_share (-full only)
opt_dff [-nodffe] [-nosdff] [-keepdc] [-sat] (except when called with -noff)
opt_clean [-purge]
opt_expr [-mux_undef] [-mux_bool] [-undriven] [-noclkinv] [-fine] [-full] [-

→˓keepdc]
while <changed design>

When called with -fast the following script is used instead:

do
opt_expr [-mux_undef] [-mux_bool] [-undriven] [-noclkinv] [-fine] [-full] [-

→˓keepdc]
opt_merge [-share_all]
opt_dff [-nodffe] [-nosdff] [-keepdc] [-sat] (except when called with -noff)
opt_clean [-purge]

while <changed design in opt_dff>

Note: Options in square brackets (such as [-keepdc]) are passed through to
the opt_* commands when given to 'opt'.

G.128 opt_clean - remove unused cells and wires

opt_clean [options] [selection]

This pass identifies wires and cells that are unused and removes them. Other
passes often remove cells but leave the wires in the design or reconnect the
wires but leave the old cells in the design. This pass can be used to clean up
after the passes that do the actual work.

This pass only operates on completely selected modules without processes.

-purge
also remove internal nets if they have a public name

G.129 opt_demorgan - Optimize reductions with DeMorgan equivalents

opt_demorgan [selection]

This pass pushes inverters through $reduce_* cells if this will reduce the
overall gate count of the circuit

G.128. opt_clean - remove unused cells and wires 207

YosysHQ Yosys

G.130 opt_dff - perform DFF optimizations

opt_dff [-nodffe] [-nosdff] [-keepdc] [-sat] [selection]

This pass converts flip-flops to a more suitable type by merging clock enables
and synchronous reset multiplexers, removing unused control inputs, or
potentially removes the flip-flop altogether, converting it to a constant
driver.

-nodffe
disables dff -> dffe conversion, and other transforms recognizing clock
enable

-nosdff
disables dff -> sdff conversion, and other transforms recognizing sync
resets

-simple-dffe
only enables clock enable recognition transform for obvious cases

-sat
additionally invoke SAT solver to detect and remove flip-flops (with
non-constant inputs) that can also be replaced with a constant driver

-keepdc
some optimizations change the behavior of the circuit with respect to
don't-care bits. for example in 'a+0' a single x-bit in 'a' will cause
all result bits to be set to x. this behavior changes when 'a+0' is
replaced by 'a'. the -keepdc option disables all such optimizations.

G.131 opt_expr - perform const folding and simple expression rewriting

opt_expr [options] [selection]

This pass performs const folding on internal cell types with constant inputs.
It also performs some simple expression rewriting.

-mux_undef
remove 'undef' inputs from $mux, $pmux and $_MUX_ cells

-mux_bool
replace $mux cells with inverters or buffers when possible

-undriven
replace undriven nets with undef (x) constants

-noclkinv
do not optimize clock inverters by changing FF types

-fine
(continues on next page)

208 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

perform fine-grain optimizations

-full
alias for -mux_undef -mux_bool -undriven -fine

-keepdc
some optimizations change the behavior of the circuit with respect to
don't-care bits. for example in 'a+0' a single x-bit in 'a' will cause
all result bits to be set to x. this behavior changes when 'a+0' is
replaced by 'a'. the -keepdc option disables all such optimizations.

G.132 opt_ffinv - push inverters through FFs

opt_ffinv [selection]

This pass pushes inverters to the other side of a FF when they can be merged
into LUTs on the other side.

G.133 opt_lut - optimize LUT cells

opt_lut [options] [selection]

This pass combines cascaded $lut cells with unused inputs.

-dlogic <type>:<cell-port>=<LUT-input>[:<cell-port>=<LUT-input>...]
preserve connections to dedicated logic cell <type> that has ports
<cell-port> connected to LUT inputs <LUT-input>. this includes
the case where both LUT and dedicated logic input are connected to
the same constant.

-limit N
only perform the first N combines, then stop. useful for debugging.

G.134 opt_lut_ins - discard unused LUT inputs

opt_lut_ins [options] [selection]

This pass removes unused inputs from LUT cells (that is, inputs that can not
influence the output signal given this LUT's value). While such LUTs cannot
be directly emitted by ABC, they can be a result of various post-ABC
transformations, such as mapping wide LUTs (not all sub-LUTs will use the
full set of inputs) or optimizations such as xilinx_dffopt.

-tech <technology>
(continues on next page)

G.132. opt_ffinv - push inverters through FFs 209

YosysHQ Yosys

(continued from previous page)

Instead of generic $lut cells, operate on LUT cells specific
to the given technology. Valid values are: xilinx, lattice, gowin.

G.135 opt_mem - optimize memories

opt_mem [options] [selection]

This pass performs various optimizations on memories in the design.

G.136 opt_mem_feedback - convert memory read-to-write port feed-
back paths to write enables

opt_mem_feedback [selection]

This pass detects cases where an asynchronous read port is only connected via
a mux tree to a write port with the same address. When such a connection is
found, it is replaced with a new condition on an enable signal, allowing
for removal of the read port.

G.137 opt_mem_priority - remove priority relations between write ports
that can never collide

opt_mem_priority [selection]

This pass detects cases where one memory write port has priority over another
even though they can never collide with each other -- ie. there can never be
a situation where a given memory bit is written by both ports at the same
time, for example because of always-different addresses, or mutually exclusive
enable signals. In such cases, the priority relation is removed.

G.138 opt_mem_widen - optimize memories where all ports are wide

opt_mem_widen [options] [selection]

This pass looks for memories where all ports are wide and adjusts the base
memory width up until that stops being the case.

210 Appendix G. Command line reference

YosysHQ Yosys

G.139 opt_merge - consolidate identical cells

opt_merge [options] [selection]

This pass identifies cells with identical type and input signals. Such cells
are then merged to one cell.

-nomux
Do not merge MUX cells.

-share_all
Operate on all cell types, not just built-in types.

-keepdc
Do not merge flipflops with don't-care bits in their initial value.

G.140 opt_muxtree - eliminate dead trees in multiplexer trees

opt_muxtree [selection]

This pass analyzes the control signals for the multiplexer trees in the design
and identifies inputs that can never be active. It then removes this dead
branches from the multiplexer trees.

This pass only operates on completely selected modules without processes.

G.141 opt_reduce - simplify large MUXes and AND/OR gates

opt_reduce [options] [selection]

This pass performs two interlinked optimizations:

1. it consolidates trees of large AND gates or OR gates and eliminates
duplicated inputs.

2. it identifies duplicated inputs to MUXes and replaces them with a single
input with the original control signals OR'ed together.

-fine
perform fine-grain optimizations

-full
alias for -fine

G.139. opt_merge - consolidate identical cells 211

YosysHQ Yosys

G.142 opt_share - merge mutually exclusive cells of the same type that
share an input signal

opt_share [selection]

This pass identifies mutually exclusive cells of the same type that:
(a) share an input signal,
(b) drive the same $mux, $_MUX_, or $pmux multiplexing cell,

allowing the cell to be merged and the multiplexer to be moved from
multiplexing its output to multiplexing the non-shared input signals.

G.143 paramap - renaming cell parameters

paramap [options] [selection]

This command renames cell parameters and/or maps key/value pairs to
other key/value pairs.

-tocase <name>
Match attribute names case-insensitively and set it to the specified
name.

-rename <old_name> <new_name>
Rename attributes as specified

-map <old_name>=<old_value> <new_name>=<new_value>
Map key/value pairs as indicated.

-imap <old_name>=<old_value> <new_name>=<new_value>
Like -map, but use case-insensitive match for <old_value> when
it is a string value.

-remove <name>=<value>
Remove attributes matching this pattern.

For example, mapping Diamond-style ECP5 "init" attributes to Yosys-style:

paramap -tocase INIT t:LUT4

212 Appendix G. Command line reference

YosysHQ Yosys

G.144 peepopt - collection of peephole optimizers

peepopt [options] [selection]

This pass applies a collection of peephole optimizers to the current design.

This pass employs the following rules:

* muldiv - Replace (A*B)/B with A

* shiftmul - Replace A>>(B*C) with A'>>(B<<K) where C and K are constants
and A' is derived from A by appropriately inserting padding
into the signal. (right variant)

Analogously, replace A<<(B*C) with appropriate selection of
output bits from A<<(B<<K). (left variant)

* shiftadd - Replace A>>(B+D) with (A'>>D)>>(B) where D is constant and
A' is derived from A by padding or cutting inaccessible bits.

G.145 plugin - load and list loaded plugins

plugin [options]

Load and list loaded plugins.

-i <plugin_filename>
Load (install) the specified plugin.

-a <alias_name>
Register the specified alias name for the loaded plugin

-l
List loaded plugins

G.146 pmux2shiftx - transform $pmux cells to $shiftx cells

pmux2shiftx [options] [selection]

This pass transforms $pmux cells to $shiftx cells.

-v, -vv
verbose output

-min_density <percentage>
specifies the minimum density for the shifter
default: 50

(continues on next page)

G.144. peepopt - collection of peephole optimizers 213

YosysHQ Yosys

(continued from previous page)

-min_choices <int>
specified the minimum number of choices for a control signal
default: 3

-onehot ignore|pmux|shiftx
select strategy for one-hot encoded control signals
default: pmux

-norange
disable $sub inference for "range decoders"

G.147 pmuxtree - transform $pmux cells to trees of $mux cells

pmuxtree [selection]

This pass transforms $pmux cells to trees of $mux cells.

G.148 portlist - list (top-level) ports

portlist [options] [selection]

This command lists all module ports found in the selected modules.

If no selection is provided then it lists the ports on the top module.

-m
print verilog blackbox module definitions instead of port lists

G.149 prep - generic synthesis script

prep [options]

This command runs a conservative RTL synthesis. A typical application for this
is the preparation stage of a verification flow. This command does not operate
on partly selected designs.

-top <module>
use the specified module as top module (default='top')

-auto-top
automatically determine the top of the design hierarchy

-flatten
flatten the design before synthesis. this will pass '-auto-top' to
'hierarchy' if no top module is specified.

(continues on next page)

214 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-ifx
passed to 'proc'. uses verilog simulation behavior for verilog if/case
undef handling. this also prevents 'wreduce' from being run.

-memx
simulate verilog simulation behavior for out-of-bounds memory accesses
using the 'memory_memx' pass.

-nomem
do not run any of the memory_* passes

-rdff
call 'memory_dff'. This enables merging of FFs into
memory read ports.

-nokeepdc
do not call opt_* with -keepdc

-run <from_label>[:<to_label>]
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

The following commands are executed by this synthesis command:

begin:
hierarchy -check [-top <top> | -auto-top]

coarse:
proc [-ifx]
flatten (if -flatten)
future
opt_expr -keepdc
opt_clean
check
opt -noff -keepdc
wreduce -keepdc [-memx]
memory_dff (if -rdff)
memory_memx (if -memx)
opt_clean
memory_collect
opt -noff -keepdc -fast

check:
stat
check

G.149. prep - generic synthesis script 215

YosysHQ Yosys

G.150 printattrs - print attributes of selected objects

printattrs [selection]

Print all attributes of the selected objects.

G.151 proc - translate processes to netlists

proc [options] [selection]

This pass calls all the other proc_* passes in the most common order.

proc_clean
proc_rmdead
proc_prune
proc_init
proc_arst
proc_rom
proc_mux
proc_dlatch
proc_dff
proc_memwr
proc_clean
opt_expr -keepdc

This replaces the processes in the design with multiplexers,
flip-flops and latches.

The following options are supported:

-nomux
Will omit the proc_mux pass.

-norom
Will omit the proc_rom pass.

-global_arst [!]<netname>
This option is passed through to proc_arst.

-ifx
This option is passed through to proc_mux. proc_rmdead is not
executed in -ifx mode.

-noopt
Will omit the opt_expr pass.

216 Appendix G. Command line reference

YosysHQ Yosys

G.152 proc_arst - detect asynchronous resets

proc_arst [-global_arst [!]<netname>] [selection]

This pass identifies asynchronous resets in the processes and converts them
to a different internal representation that is suitable for generating
flip-flop cells with asynchronous resets.

-global_arst [!]<netname>
In modules that have a net with the given name, use this net as async
reset for registers that have been assign initial values in their
declaration ('reg foobar = constant_value;'). Use the '!' modifier for
active low reset signals. Note: the frontend stores the default value
in the 'init' attribute on the net.

G.153 proc_clean - remove empty parts of processes

proc_clean [options] [selection]

-quiet
do not print any messages.

This pass removes empty parts of processes and ultimately removes a process
if it contains only empty structures.

G.154 proc_dff - extract flip-flops from processes

proc_dff [selection]

This pass identifies flip-flops in the processes and converts them to
d-type flip-flop cells.

G.155 proc_dlatch - extract latches from processes

proc_dlatch [selection]

This pass identifies latches in the processes and converts them to
d-type latches.

G.152. proc_arst - detect asynchronous resets 217

YosysHQ Yosys

G.156 proc_init - convert initial block to init attributes

proc_init [selection]

This pass extracts the 'init' actions from processes (generated from Verilog
'initial' blocks) and sets the initial value to the 'init' attribute on the
respective wire.

G.157 proc_memwr - extract memory writes from processes

proc_memwr [selection]

This pass converts memory writes in processes into $memwr cells.

G.158 proc_mux - convert decision trees to multiplexers

proc_mux [options] [selection]

This pass converts the decision trees in processes (originating from if-else
and case statements) to trees of multiplexer cells.

-ifx
Use Verilog simulation behavior with respect to undef values in
'case' expressions and 'if' conditions.

G.159 proc_prune - remove redundant assignments

proc_prune [selection]

This pass identifies assignments in processes that are always overwritten by
a later assignment to the same signal and removes them.

G.160 proc_rmdead - eliminate dead trees in decision trees

proc_rmdead [selection]

This pass identifies unreachable branches in decision trees and removes them.

218 Appendix G. Command line reference

YosysHQ Yosys

G.161 proc_rom - convert switches to ROMs

proc_rom [selection]

This pass converts switches into read-only memories when appropriate.

G.162 qbfsat - solve a 2QBF-SAT problem in the circuit

qbfsat [options] [selection]

This command solves an "exists-forall" 2QBF-SAT problem defined over the
currently selected module. Existentially-quantified variables are declared by
assigning a wire "$anyconst". Universally-quantified variables may be
explicitly declared by assigning a wire "$allconst", but module inputs will be
treated as universally-quantified variables by default.

-nocleanup
Do not delete temporary files and directories. Useful for debugging.

-dump-final-smt2 <file>
Pass the --dump-smt2 option to yosys-smtbmc.

-assume-outputs
Add an "$assume" cell for the conjunction of all one-bit module output
wires.

-assume-negative-polarity
When adding $assume cells for one-bit module output wires, assume they
are negative polarity signals and should always be low, for example like
the miters created with the `miter` command.

-nooptimize
Ignore "\minimize" and "\maximize" attributes, do not emit
"(maximize)" or "(minimize)" in the SMT-LIBv2, and generally make no
attempt to optimize anything.

-nobisection
If a wire is marked with the "\minimize" or "\maximize" attribute,
do not attempt to optimize that value with the default iterated solving
and threshold bisection approach. Instead, have yosys-smtbmc emit a
"(minimize)" or "(maximize)" command in the SMT-LIBv2 output and
hope that the solver supports optimizing quantified bitvector problems.

-solver <solver>
Use a particular solver. Choose one of: "z3", "yices", "cvc4"
and "cvc5". (default: yices)

-solver-option <name> <value>
Set the specified solver option in the SMT-LIBv2 problem file.

(continues on next page)

G.161. proc_rom - convert switches to ROMs 219

YosysHQ Yosys

(continued from previous page)

-timeout <value>
Set the per-iteration timeout in seconds.
(default: no timeout)

-O0, -O1, -O2
Control the use of ABC to simplify the QBF-SAT problem before solving.

-sat
Generate an error if the solver does not return "sat".

-unsat
Generate an error if the solver does not return "unsat".

-show-smtbmc
Print the output from yosys-smtbmc.

-specialize
If the problem is satisfiable, replace each "$anyconst" cell with its
corresponding constant value from the model produced by the solver.

-specialize-from-file <solution file>
Do not run the solver, but instead only attempt to replace each
"$anyconst" cell in the current module with a constant value provided
by the specified file.

-write-solution <solution file>
If the problem is satisfiable, write the corresponding constant value
for each "$anyconst" cell from the model produced by the solver to the
specified file.

G.163 ql_bram_merge - Infers QuickLogic k6n10f BRAM pairs that can
operate independently

ql_bram_merge [selection]

This pass identifies k6n10f 18K BRAM cells and packs pairs of them together
into a TDP36K cell operating in split mode

G.164 ql_bram_types - Change TDP36K type to subtypes

ql_bram_types [selection]

This pass changes the type of TDP36K cells to different types based on the
configuration of the cell.

220 Appendix G. Command line reference

YosysHQ Yosys

G.165 ql_dsp_io_regs - change types of QL_DSP2 depending on con-
figuration

ql_dsp_io_regs [options] [selection]

This pass looks for QL_DSP2 cells and changes their cell type depending on their
configuration.

G.166 ql_dsp_macc - infer QuickLogic multiplier-accumulator DSP
cells

ql_dsp_macc [selection]

This pass looks for a multiply-accumulate pattern based on which it infers a
QuickLogic DSP cell.

G.167 ql_dsp_simd - merge QuickLogic K6N10f DSP pairs to operate
in SIMD mode

ql_dsp_simd [selection]

This pass identifies K6N10f DSP cells with identical configuration and pack pairs
of them together into other DSP cells that can perform SIMD operation.

G.168 qwp - quadratic wirelength placer

qwp [options] [selection]

This command runs quadratic wirelength placement on the selected modules and
annotates the cells in the design with 'qwp_position' attributes.

-ltr
Add left-to-right constraints: constrain all inputs on the left border
outputs to the right border.

-alpha
Add constraints for inputs/outputs to be placed in alphanumerical
order along the y-axis (top-to-bottom).

-grid N
Number of grid divisions in x- and y-direction. (default=16)

-dump <html_file_name>
Dump a protocol of the placement algorithm to the html file.

(continues on next page)

G.165. ql_dsp_io_regs - change types of QL_DSP2 depending on configuration 221

YosysHQ Yosys

(continued from previous page)

-v
Verbose solver output for profiling or debugging

Note: This implementation of a quadratic wirelength placer uses exact
dense matrix operations. It is only a toy-placer for small circuits.

G.169 read - load HDL designs

read {-vlog95|-vlog2k|-sv2005|-sv2009|-sv2012|-sv|-formal} <verilog-file>..

Load the specified Verilog/SystemVerilog files. (Full SystemVerilog support
is only available via Verific.)

Additional -D<macro>[=<value>] options may be added after the option indicating
the language version (and before file names) to set additional verilog defines.

read {-vhdl87|-vhdl93|-vhdl2k|-vhdl2008|-vhdl} <vhdl-file>..

Load the specified VHDL files. (Requires Verific.)

read {-edif} <edif-file>..

Load the specified EDIF files. (Requires Verific.)

read {-liberty} <liberty-file>..

Load the specified Liberty files.

-lib
only create empty blackbox modules

read {-f|-F} <command-file>

Load and execute the specified command file. (Requires Verific.)
Check verific command for more information about supported commands in file.

read -define <macro>[=<value>]..

Set global Verilog/SystemVerilog defines.

read -undef <macro>..

(continues on next page)

222 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

Unset global Verilog/SystemVerilog defines.

read -incdir <directory>

Add directory to global Verilog/SystemVerilog include directories.

read -verific
read -noverific

Subsequent calls to 'read' will either use or not use Verific. Calling 'read'
with -verific will result in an error on Yosys binaries that are built without
Verific support. The default is to use Verific if it is available.

G.170 read_aiger - read AIGER file

read_aiger [options] [filename]

Load module from an AIGER file into the current design.

-module_name <module_name>
name of module to be created (default: <filename>)

-clk_name <wire_name>
if specified, AIGER latches to be transformed into $_DFF_P_ cells
clocked by wire of this name. otherwise, $_FF_ cells will be used

-map <filename>
read file with port and latch symbols

-wideports
merge ports that match the pattern 'name[int]' into a single
multi-bit port 'name'

-xaiger
read XAIGER extensions

G.171 read_blif - read BLIF file

read_blif [options] [filename]

Load modules from a BLIF file into the current design.

-sop
Create $sop cells instead of $lut cells

(continues on next page)

G.170. read_aiger - read AIGER file 223

YosysHQ Yosys

(continued from previous page)

-wideports
Merge ports that match the pattern 'name[int]' into a single
multi-bit port 'name'.

G.172 read_ilang - (deprecated) alias of read_rtlil

See `help read_rtlil`.

G.173 read_json - read JSON file

read_json [filename]

Load modules from a JSON file into the current design See "help write_json"
for a description of the file format.

G.174 read_liberty - read cells from liberty file

read_liberty [filename]

Read cells from liberty file as modules into current design.

-lib
only create empty blackbox modules

-wb
mark imported cells as whiteboxes

-nooverwrite
ignore re-definitions of modules. (the default behavior is to
create an error message if the existing module is not a blackbox
module, and overwrite the existing module if it is a blackbox module.)

-overwrite
overwrite existing modules with the same name

-ignore_miss_func
ignore cells with missing function specification of outputs

-ignore_miss_dir
ignore cells with a missing or invalid direction
specification on a pin

-ignore_miss_data_latch
ignore latches with missing data and/or enable pins

(continues on next page)

224 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-setattr <attribute_name>
set the specified attribute (to the value 1) on all loaded modules

G.175 read_rtlil - read modules from RTLIL file

read_rtlil [filename]

Load modules from an RTLIL file to the current design. (RTLIL is a text
representation of a design in yosys's internal format.)

-nooverwrite
ignore re-definitions of modules. (the default behavior is to
create an error message if the existing module is not a blackbox
module, and overwrite the existing module if it is a blackbox module.)

-overwrite
overwrite existing modules with the same name

-lib
only create empty blackbox modules

G.176 read_verilog - read modules from Verilog file

read_verilog [options] [filename]

Load modules from a Verilog file to the current design. A large subset of
Verilog-2005 is supported.

-sv
enable support for SystemVerilog features. (only a small subset
of SystemVerilog is supported)

-formal
enable support for SystemVerilog assertions and some Yosys extensions
replace the implicit -D SYNTHESIS with -D FORMAL

-nosynthesis
don't add implicit -D SYNTHESIS

-noassert
ignore assert() statements

-noassume
ignore assume() statements

-norestrict
ignore restrict() statements

(continues on next page)

G.175. read_rtlil - read modules from RTLIL file 225

YosysHQ Yosys

(continued from previous page)

-assume-asserts
treat all assert() statements like assume() statements

-assert-assumes
treat all assume() statements like assert() statements

-nodisplay
suppress output from display system tasks ($display et. al).
This does not affect the output from a later 'sim' command.

-debug
alias for -dump_ast1 -dump_ast2 -dump_vlog1 -dump_vlog2 -yydebug

-dump_ast1
dump abstract syntax tree (before simplification)

-dump_ast2
dump abstract syntax tree (after simplification)

-no_dump_ptr
do not include hex memory addresses in dump (easier to diff dumps)

-dump_vlog1
dump ast as Verilog code (before simplification)

-dump_vlog2
dump ast as Verilog code (after simplification)

-dump_rtlil
dump generated RTLIL netlist

-yydebug
enable parser debug output

-nolatches
usually latches are synthesized into logic loops
this option prohibits this and sets the output to 'x'
in what would be the latches hold condition

this behavior can also be achieved by setting the
'nolatches' attribute on the respective module or
always block.

-nomem2reg
under certain conditions memories are converted to registers
early during simplification to ensure correct handling of
complex corner cases. this option disables this behavior.

this can also be achieved by setting the 'nomem2reg'
attribute on the respective module or register.

(continues on next page)

226 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

This is potentially dangerous. Usually the front-end has good
reasons for converting an array to a list of registers.
Prohibiting this step will likely result in incorrect synthesis
results.

-mem2reg
always convert memories to registers. this can also be
achieved by setting the 'mem2reg' attribute on the respective
module or register.

-nomeminit
do not infer $meminit cells and instead convert initialized
memories to registers directly in the front-end.

-ppdump
dump Verilog code after pre-processor

-nopp
do not run the pre-processor

-nodpi
disable DPI-C support

-noblackbox
do not automatically add a (* blackbox *) attribute to an
empty module.

-lib
only create empty blackbox modules. This implies -DBLACKBOX.
modules with the (* whitebox *) attribute will be preserved.
(* lib_whitebox *) will be treated like (* whitebox *).

-nowb
delete (* whitebox *) and (* lib_whitebox *) attributes from
all modules.

-specify
parse and import specify blocks

-noopt
don't perform basic optimizations (such as const folding) in the
high-level front-end.

-icells
interpret cell types starting with '$' as internal cell types

-pwires
add a wire for each module parameter

-nooverwrite
ignore re-definitions of modules. (the default behavior is to
create an error message if the existing module is not a black box

(continues on next page)

G.176. read_verilog - read modules from Verilog file 227

YosysHQ Yosys

(continued from previous page)

module, and overwrite the existing module otherwise.)

-overwrite
overwrite existing modules with the same name

-defer
only read the abstract syntax tree and defer actual compilation
to a later 'hierarchy' command. Useful in cases where the default
parameters of modules yield invalid or not synthesizable code.

-noautowire
make the default of `default_nettype be "none" instead of "wire".

-setattr <attribute_name>
set the specified attribute (to the value 1) on all loaded modules

-Dname[=definition]
define the preprocessor symbol 'name' and set its optional value
'definition'

-Idir
add 'dir' to the directories which are used when searching include
files

The command 'verilog_defaults' can be used to register default options for
subsequent calls to 'read_verilog'.

Note that the Verilog frontend does a pretty good job of processing valid
verilog input, but has not very good error reporting. It generally is
recommended to use a simulator (for example Icarus Verilog) for checking
the syntax of the code, rather than to rely on read_verilog for that.

Depending on if read_verilog is run in -formal mode, either the macro
SYNTHESIS or FORMAL is defined automatically, unless -nosynthesis is used.
In addition, read_verilog always defines the macro YOSYS.

See the Yosys README file for a list of non-standard Verilog features
supported by the Yosys Verilog front-end.

G.177 recover_names - Execute a lossy mapping command and recover
original netnames

recover_names [command]

This pass executes a lossy mapping command and uses a combination of simulation
to find candidate equivalences and SAT to recover exact original net names.

228 Appendix G. Command line reference

YosysHQ Yosys

G.178 rename - rename object in the design

rename old_name new_name

Rename the specified object. Note that selection patterns are not supported
by this command.

rename -output old_name new_name

Like above, but also make the wire an output. This will fail if the object is
not a wire.

rename -src [selection]

Assign names auto-generated from the src attribute to all selected wires and
cells with private names.

rename -wire [selection] [-suffix <suffix>]

Assign auto-generated names based on the wires they drive to all selected
cells with private names. Ignores cells driving privatly named wires.
By default, the cell is named after the wire with the cell type as suffix.
The -suffix option can be used to set the suffix to the given string instead.

rename -enumerate [-pattern <pattern>] [selection]

Assign short auto-generated names to all selected wires and cells with private
names. The -pattern option can be used to set the pattern for the new names.
The character % in the pattern is replaced with a integer number. The default
pattern is '_%_'.

rename -witness

Assigns auto-generated names to all $any*/$all* output wires and containing
cells that do not have a public name. This ensures that, during formal
verification, a solver-found trace can be fully specified using a public
hierarchical names.

rename -hide [selection]

Assign private names (the ones with $-prefix) to all selected wires and cells
with public names. This ignores all selected ports.

rename -top new_name
(continues on next page)

G.178. rename - rename object in the design 229

YosysHQ Yosys

(continued from previous page)

Rename top module.

rename -scramble-name [-seed <seed>] [selection]

Assign randomly-generated names to all selected wires and cells. The seed option
can be used to change the random number generator seed from the default, but it
must be non-zero.

G.179 rmports - remove module ports with no connections

rmports [selection]

This pass identifies ports in the selected modules which are not used or
driven and removes them.

G.180 sat - solve a SAT problem in the circuit

sat [options] [selection]

This command solves a SAT problem defined over the currently selected circuit
and additional constraints passed as parameters.

-all
show all solutions to the problem (this can grow exponentially, use
-max <N> instead to get <N> solutions)

-max <N>
like -all, but limit number of solutions to <N>

-enable_undef
enable modeling of undef value (aka 'x-bits')
this option is implied by -set-def, -set-undef et. cetera

-max_undef
maximize the number of undef bits in solutions, giving a better
picture of which input bits are actually vital to the solution.

-set <signal> <value>
set the specified signal to the specified value.

-set-def <signal>
add a constraint that all bits of the given signal must be defined

-set-any-undef <signal>
add a constraint that at least one bit of the given signal is undefined

(continues on next page)

230 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-set-all-undef <signal>
add a constraint that all bits of the given signal are undefined

-set-def-inputs
add -set-def constraints for all module inputs

-set-def-formal
add -set-def constraints for formal $anyinit, $anyconst, $anyseq cells

-show <signal>
show the model for the specified signal. if no -show option is
passed then a set of signals to be shown is automatically selected.

-show-inputs, -show-outputs, -show-ports
add all module (input/output) ports to the list of shown signals

-show-regs, -show-public, -show-all
show all registers, show signals with 'public' names, show all signals

-ignore_div_by_zero
ignore all solutions that involve a division by zero

-ignore_unknown_cells
ignore all cells that can not be matched to a SAT model

The following options can be used to set up a sequential problem:

-seq <N>
set up a sequential problem with <N> time steps. The steps will
be numbered from 1 to N.

note: for large <N> it can be significantly faster to use
-tempinduct-baseonly -maxsteps <N> instead of -seq <N>.

-set-at <N> <signal> <value>
-unset-at <N> <signal>

set or unset the specified signal to the specified value in the
given timestep. this has priority over a -set for the same signal.

-set-assumes
set all assumptions provided via $assume cells

-set-def-at <N> <signal>
-set-any-undef-at <N> <signal>
-set-all-undef-at <N> <signal>

add undef constraints in the given timestep.

-set-init <signal> <value>
set the initial value for the register driving the signal to the value

-set-init-undef
(continues on next page)

G.180. sat - solve a SAT problem in the circuit 231

YosysHQ Yosys

(continued from previous page)

set all initial states (not set using -set-init) to undef

-set-init-def
do not force a value for the initial state but do not allow undef

-set-init-zero
set all initial states (not set using -set-init) to zero

-dump_vcd <vcd-file-name>
dump SAT model (counter example in proof) to VCD file

-dump_json <json-file-name>
dump SAT model (counter example in proof) to a WaveJSON file.

-dump_cnf <cnf-file-name>
dump CNF of SAT problem (in DIMACS format). in temporal induction
proofs this is the CNF of the first induction step.

The following additional options can be used to set up a proof. If also -seq
is passed, a temporal induction proof is performed.

-tempinduct
Perform a temporal induction proof. In a temporal induction proof it is
proven that the condition holds forever after the number of time steps
specified using -seq.

-tempinduct-def
Perform a temporal induction proof. Assume an initial state with all
registers set to defined values for the induction step.

-tempinduct-baseonly
Run only the basecase half of temporal induction (requires -maxsteps)

-tempinduct-inductonly
Run only the induction half of temporal induction

-tempinduct-skip <N>
Skip the first <N> steps of the induction proof.

note: this will assume that the base case holds for <N> steps.
this must be proven independently with "-tempinduct-baseonly
-maxsteps <N>". Use -initsteps if you just want to set a
minimal induction length.

-prove <signal> <value>
Attempt to proof that <signal> is always <value>.

-prove-x <signal> <value>
Like -prove, but an undef (x) bit in the lhs matches any value on
the right hand side. Useful for equivalence checking.

-prove-asserts
(continues on next page)

232 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

Prove that all asserts in the design hold.

-prove-skip <N>
Do not enforce the prove-condition for the first <N> time steps.

-maxsteps <N>
Set a maximum length for the induction.

-initsteps <N>
Set initial length for the induction.
This will speed up the search of the right induction length
for deep induction proofs.

-stepsize <N>
Increase the size of the induction proof in steps of <N>.
This will speed up the search of the right induction length
for deep induction proofs.

-timeout <N>
Maximum number of seconds a single SAT instance may take.

-verify
Return an error and stop the synthesis script if the proof fails.

-verify-no-timeout
Like -verify but do not return an error for timeouts.

-falsify
Return an error and stop the synthesis script if the proof succeeds.

-falsify-no-timeout
Like -falsify but do not return an error for timeouts.

G.181 scatter - add additional intermediate nets

scatter [selection]

This command adds additional intermediate nets on all cell ports. This is used
for testing the correct use of the SigMap helper in passes. If you don't know
what this means: don't worry -- you only need this pass when testing your own
extensions to Yosys.

Use the opt_clean command to get rid of the additional nets.

G.181. scatter - add additional intermediate nets 233

YosysHQ Yosys

G.182 scc - detect strongly connected components (logic loops)

scc [options] [selection]

This command identifies strongly connected components (aka logic loops) in the
design.

-expect <num>
expect to find exactly <num> SCCs. A different number of SCCs will
produce an error.

-max_depth <num>
limit to loops not longer than the specified number of cells. This
can e.g. be useful in identifying small local loops in a module that
implements one large SCC.

-nofeedback
do not count cells that have their output fed back into one of their
inputs as single-cell scc.

-all_cell_types
Usually this command only considers internal non-memory cells. With
this option set, all cells are considered. For unknown cells all ports
are assumed to be bidirectional 'inout' ports.

-set_attr <name> <value>
set the specified attribute on all cells that are part of a logic
loop. the special token {} in the value is replaced with a unique
identifier for the logic loop.

-select
replace the current selection with a selection of all cells and wires
that are part of a found logic loop

-specify
examine specify rules to detect logic loops in whitebox/blackbox cells

G.183 scratchpad - get/set values in the scratchpad

scratchpad [options]

This pass allows to read and modify values from the scratchpad of the current
design. Options:

-get <identifier>
print the value saved in the scratchpad under the given identifier.

-set <identifier> <value>
save the given value in the scratchpad under the given identifier.

(continues on next page)

234 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-unset <identifier>
remove the entry for the given identifier from the scratchpad.

-copy <identifier_from> <identifier_to>
copy the value of the first identifier to the second identifier.

-assert <identifier> <value>
assert that the entry for the given identifier is set to the given
value.

-assert-set <identifier>
assert that the entry for the given identifier exists.

-assert-unset <identifier>
assert that the entry for the given identifier does not exist.

The identifier may not contain whitespace. By convention, it is usually prefixed
by the name of the pass that uses it, e.g. 'opt.did_something'. If the value
contains whitespace, it must be enclosed in double quotes.

G.184 script - execute commands from file or wire

script <filename> [<from_label>:<to_label>]
script -scriptwire [selection]

This command executes the yosys commands in the specified file (default
behaviour), or commands embedded in the constant text value connected to the
selected wires.

In the default (file) case, the 2nd argument can be used to only execute the
section of the file between the specified labels. An empty from label is
synonymous with the beginning of the file and an empty to label is synonymous
with the end of the file.

If only one label is specified (without ':') then only the block
marked with that label (until the next label) is executed.

In "-scriptwire" mode, the commands on the selected wire(s) will be executed
in the scope of (and thus, relative to) the wires' owning module(s). This
'-module' mode can be exited by using the 'cd' command.

G.184. script - execute commands from file or wire 235

YosysHQ Yosys

G.185 select - modify and view the list of selected objects

select [-add | -del | -set <name>] {-read <filename> | <selection>}
select [-unset <name>]
select [<assert_option>] {-read <filename> | <selection>}
select [-list | -write <filename> | -count | -clear]
select -module <modname>

Most commands use the list of currently selected objects to determine which part
of the design to operate on. This command can be used to modify and view this
list of selected objects.

Note that many commands support an optional [selection] argument that can be
used to override the global selection for the command. The syntax of this
optional argument is identical to the syntax of the <selection> argument
described here.

-add, -del
add or remove the given objects to the current selection.
without this options the current selection is replaced.

-set <name>
do not modify the current selection. instead save the new selection
under the given name (see @<name> below). to save the current selection,
use "select -set <name> %"

-unset <name>
do not modify the current selection. instead remove a previously saved
selection under the given name (see @<name> below).

-assert-none
do not modify the current selection. instead assert that the given
selection is empty. i.e. produce an error if any object or module
matching the selection is found.

-assert-any
do not modify the current selection. instead assert that the given
selection is non-empty. i.e. produce an error if no object or module
matching the selection is found.

-assert-count N
do not modify the current selection. instead assert that the given
selection contains exactly N objects.

-assert-max N
do not modify the current selection. instead assert that the given
selection contains less than or exactly N objects.

-assert-min N
do not modify the current selection. instead assert that the given
selection contains at least N objects.

(continues on next page)

236 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-list
list all objects in the current selection

-write <filename>
like -list but write the output to the specified file

-read <filename>
read the specified file (written by -write)

-count
count all objects in the current selection

-clear
clear the current selection. this effectively selects the whole
design. it also resets the selected module (see -module). use the
command 'select *' to select everything but stay in the current module.

-none
create an empty selection. the current module is unchanged.

-module <modname>
limit the current scope to the specified module.
the difference between this and simply selecting the module
is that all object names are interpreted relative to this
module after this command until the selection is cleared again.

When this command is called without an argument, the current selection
is displayed in a compact form (i.e. only the module name when a whole module
is selected).

The <selection> argument itself is a series of commands for a simple stack
machine. Each element on the stack represents a set of selected objects.
After this commands have been executed, the union of all remaining sets
on the stack is computed and used as selection for the command.

Pushing (selecting) object when not in -module mode:

<mod_pattern>
select the specified module(s)

<mod_pattern>/<obj_pattern>
select the specified object(s) from the module(s)

Pushing (selecting) object when in -module mode:

<obj_pattern>
select the specified object(s) from the current module

By default, patterns will not match black/white-box modules or their
contents. To include such objects, prefix the pattern with '='.

A <mod_pattern> can be a module name, wildcard expression (*, ?, [..])
(continues on next page)

G.185. select - modify and view the list of selected objects 237

YosysHQ Yosys

(continued from previous page)

matching module names, or one of the following:

A:<pattern>, A:<pattern>=<pattern>
all modules with an attribute matching the given pattern
in addition to = also <, <=, >=, and > are supported

N:<pattern>
all modules with a name matching the given pattern
(i.e. 'N:' is optional as it is the default matching rule)

An <obj_pattern> can be an object name, wildcard expression, or one of
the following:

w:<pattern>
all wires with a name matching the given wildcard pattern

i:<pattern>, o:<pattern>, x:<pattern>
all inputs (i:), outputs (o:) or any ports (x:) with matching names

s:<size>, s:<min>:<max>
all wires with a matching width

m:<pattern>
all memories with a name matching the given pattern

c:<pattern>
all cells with a name matching the given pattern

t:<pattern>
all cells with a type matching the given pattern

p:<pattern>
all processes with a name matching the given pattern

a:<pattern>
all objects with an attribute name matching the given pattern

a:<pattern>=<pattern>
all objects with a matching attribute name-value-pair.
in addition to = also <, <=, >=, and > are supported

r:<pattern>, r:<pattern>=<pattern>
cells with matching parameters. also with <, <=, >= and >.

n:<pattern>
all objects with a name matching the given pattern
(i.e. 'n:' is optional as it is the default matching rule)

@<name>
push the selection saved prior with 'select -set <name> ...'

The following actions can be performed on the top sets on the stack:
(continues on next page)

238 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

%
push a copy of the current selection to the stack

%%
replace the stack with a union of all elements on it

%n
replace top set with its invert

%u
replace the two top sets on the stack with their union

%i
replace the two top sets on the stack with their intersection

%d
pop the top set from the stack and subtract it from the new top

%D
like %d but swap the roles of two top sets on the stack

%c
create a copy of the top set from the stack and push it

%x[<num1>|*][.<num2>][:<rule>[:<rule>..]]
expand top set <num1> num times according to the specified rules.
(i.e. select all cells connected to selected wires and select all
wires connected to selected cells) The rules specify which cell
ports to use for this. the syntax for a rule is a '-' for exclusion
and a '+' for inclusion, followed by an optional comma separated
list of cell types followed by an optional comma separated list of
cell ports in square brackets. a rule can also be just a cell or wire
name that limits the expansion (is included but does not go beyond).
select at most <num2> objects. a warning message is printed when this
limit is reached. When '*' is used instead of <num1> then the process
is repeated until no further object are selected.

%ci[<num1>|*][.<num2>][:<rule>[:<rule>..]]
%co[<num1>|*][.<num2>][:<rule>[:<rule>..]]

similar to %x, but only select input (%ci) or output cones (%co)

%xe[...] %cie[...] %coe
like %x, %ci, and %co but only consider combinatorial cells

%a
expand top set by selecting all wires that are (at least in part)
aliases for selected wires.

%s
expand top set by adding all modules that implement cells in selected
modules

(continues on next page)

G.185. select - modify and view the list of selected objects 239

YosysHQ Yosys

(continued from previous page)

%m
expand top set by selecting all modules that contain selected objects

%M
select modules that implement selected cells

%C
select cells that implement selected modules

%R[<num>]
select <num> random objects from top selection (default 1)

Example: the following command selects all wires that are connected to a
'GATE' input of a 'SWITCH' cell:

select */t:SWITCH %x:+[GATE] */t:SWITCH %d

G.186 setattr - set/unset attributes on objects

setattr [-mod] [-set name value | -unset name]... [selection]

Set/unset the given attributes on the selected objects. String values must be
passed in double quotes (").

When called with -mod, this command will set and unset attributes on modules
instead of objects within modules.

G.187 setparam - set/unset parameters on objects

setparam [-type cell_type] [-set name value | -unset name]... [selection]

Set/unset the given parameters on the selected cells. String values must be
passed in double quotes (").

The -type option can be used to change the cell type of the selected cells.

G.188 setundef - replace undef values with defined constants

setundef [options] [selection]

This command replaces undef (x) constants with defined (0/1) constants.

-undriven
also set undriven nets to constant values

(continues on next page)

240 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-expose
also expose undriven nets as inputs (use with -undriven)

-zero
replace with bits cleared (0)

-one
replace with bits set (1)

-undef
replace with undef (x) bits, may be used with -undriven

-anyseq
replace with $anyseq drivers (for formal)

-anyconst
replace with $anyconst drivers (for formal)

-random <seed>
replace with random bits using the specified integer as seed
value for the random number generator.

-init
also create/update init values for flip-flops

-params
replace undef in cell parameters

G.189 share - perform sat-based resource sharing

share [options] [selection]

This pass merges shareable resources into a single resource. A SAT solver
is used to determine if two resources are share-able.

-force
Per default the selection of cells that is considered for sharing is
narrowed using a list of cell types. With this option all selected
cells are considered for resource sharing.

IMPORTANT NOTE: If the -all option is used then no cells with internal
state must be selected!

-aggressive
Per default some heuristics are used to reduce the number of cells
considered for resource sharing to only large resources. This options
turns this heuristics off, resulting in much more cells being considered
for resource sharing.

(continues on next page)

G.189. share - perform sat-based resource sharing 241

YosysHQ Yosys

(continued from previous page)

-fast
Only consider the simple part of the control logic in SAT solving, resulting
in much easier SAT problems at the cost of maybe missing some opportunities
for resource sharing.

-limit N
Only perform the first N merges, then stop. This is useful for debugging.

G.190 shell - enter interactive command mode

shell

This command enters the interactive command mode. This can be useful
in a script to interrupt the script at a certain point and allow for
interactive inspection or manual synthesis of the design at this point.

The command prompt of the interactive shell indicates the current
selection (see 'help select'):

yosys>
the entire design is selected

yosys*>
only part of the design is selected

yosys [modname]>
the entire module 'modname' is selected using 'select -module modname'

yosys [modname]*>
only part of current module 'modname' is selected

When in interactive shell, some errors (e.g. invalid command arguments)
do not terminate yosys but return to the command prompt.

This command is the default action if nothing else has been specified
on the command line.

Press Ctrl-D or type 'exit' to leave the interactive shell.

242 Appendix G. Command line reference

YosysHQ Yosys

G.191 show - generate schematics using graphviz

show [options] [selection]

Create a graphviz DOT file for the selected part of the design and compile it
to a graphics file (usually SVG or PostScript).

-viewer <viewer>
Run the specified command with the graphics file as parameter.
On Windows, this pauses yosys until the viewer exits.
Use "-viewer none" to not run any command.

-format <format>
Generate a graphics file in the specified format. Use 'dot' to just
generate a .dot file, or other <format> strings such as 'svg' or 'ps'
to generate files in other formats (this calls the 'dot' command).

-lib <verilog_or_rtlil_file>
Use the specified library file for determining whether cell ports are
inputs or outputs. This option can be used multiple times to specify
more than one library.

note: in most cases it is better to load the library before calling
show with 'read_verilog -lib <filename>'. it is also possible to
load liberty files with 'read_liberty -lib <filename>'.

-prefix <prefix>
generate <prefix>.* instead of ~/.yosys_show.*

-color <color> <object>
assign the specified color to the specified object. The object can be
a single selection wildcard expressions or a saved set of objects in
the @<name> syntax (see "help select" for details).

-label <text> <object>
assign the specified label text to the specified object. The object can
be a single selection wildcard expressions or a saved set of objects in
the @<name> syntax (see "help select" for details).

-colors <seed>
Randomly assign colors to the wires. The integer argument is the seed
for the random number generator. Change the seed value if the colored
graph still is ambiguous. A seed of zero deactivates the coloring.

-colorattr <attribute_name>
Use the specified attribute to assign colors. A unique color is
assigned to each unique value of this attribute.

-width
annotate buses with a label indicating the width of the bus.

-signed
(continues on next page)

G.191. show - generate schematics using graphviz 243

YosysHQ Yosys

(continued from previous page)

mark ports (A, B) that are declared as signed (using the [AB]_SIGNED
cell parameter) with an asterisk next to the port name.

-stretch
stretch the graph so all inputs are on the left side and all outputs
(including inout ports) are on the right side.

-pause
wait for the user to press enter to before returning

-enum
enumerate objects with internal ($-prefixed) names

-long
do not abbreviate objects with internal ($-prefixed) names

-notitle
do not add the module name as graph title to the dot file

-nobg
don't run viewer in the background, IE wait for the viewer tool to
exit before returning

When no <format> is specified, 'dot' is used. When no <format> and <viewer> is
specified, 'xdot' is used to display the schematic (POSIX systems only).

The generated output files are '~/.yosys_show.dot' and '~/.yosys_show.<format>',
unless another prefix is specified using -prefix <prefix>.

Yosys on Windows and YosysJS use different defaults: The output is written
to 'show.dot' in the current directory and new viewer is launched each time
the 'show' command is executed.

G.192 shregmap - map shift registers

shregmap [options] [selection]

This pass converts chains of $_DFF_[NP]_ gates to target specific shift register
primitives. The generated shift register will be of type $__SHREG_DFF_[NP]_ and
will use the same interface as the original $_DFF_*_ cells. The cell parameter
'DEPTH' will contain the depth of the shift register. Use a target-specific
'techmap' map file to convert those cells to the actual target cells.

-minlen N
minimum length of shift register (default = 2)
(this is the length after -keep_before and -keep_after)

-maxlen N
maximum length of shift register (default = no limit)

(continues on next page)

244 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

larger chains will be mapped to multiple shift register instances

-keep_before N
number of DFFs to keep before the shift register (default = 0)

-keep_after N
number of DFFs to keep after the shift register (default = 0)

-clkpol pos|neg|any
limit match to only positive or negative edge clocks. (default = any)

-enpol pos|neg|none|any_or_none|any
limit match to FFs with the specified enable polarity. (default = none)

-match <cell_type>[:<d_port_name>:<q_port_name>]
match the specified cells instead of $_DFF_N_ and $_DFF_P_. If
':<d_port_name>:<q_port_name>' is omitted then 'D' and 'Q' is used
by default. E.g. the option '-clkpol pos' is just an alias for
'-match $_DFF_P_', which is an alias for '-match $_DFF_P_:D:Q'.

-params
instead of encoding the clock and enable polarity in the cell name by
deriving from the original cell name, simply name all generated cells
$__SHREG_ and use CLKPOL and ENPOL parameters. An ENPOL value of 2 is
used to denote cells without enable input. The ENPOL parameter is
omitted when '-enpol none' (or no -enpol option) is passed.

-zinit
assume the shift register is automatically zero-initialized, so it
becomes legal to merge zero initialized FFs into the shift register.

-init
map initialized registers to the shift reg, add an INIT parameter to
generated cells with the initialization value. (first bit to shift out
in LSB position)

-tech greenpak4
map to greenpak4 shift registers.

G.193 sim - simulate the circuit

sim [options] [top-level]

This command simulates the circuit using the given top-level module.

-vcd <filename>
write the simulation results to the given VCD file

-fst <filename>
(continues on next page)

G.193. sim - simulate the circuit 245

YosysHQ Yosys

(continued from previous page)

write the simulation results to the given FST file

-aiw <filename>
write the simulation results to an AIGER witness file
(requires a *.aim file via -map)

-hdlname
use the hdlname attribute when writing simulation results
(preserves hierarchy in a flattened design)

-x
ignore constant x outputs in simulation file.

-date
include date and full version info in output.

-clock <portname>
name of top-level clock input

-clockn <portname>
name of top-level clock input (inverse polarity)

-multiclock
mark that witness file is multiclock.

-reset <portname>
name of top-level reset input (active high)

-resetn <portname>
name of top-level inverted reset input (active low)

-rstlen <integer>
number of cycles reset should stay active (default: 1)

-zinit
zero-initialize all uninitialized regs and memories

-timescale <string>
include the specified timescale declaration in the vcd

-n <integer>
number of clock cycles to simulate (default: 20)

-noinitstate
do not activate $initstate cells during the first cycle

-a
use all nets in VCD/FST operations, not just those with public names

-w
writeback mode: use final simulation state as new init state

(continues on next page)

246 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-r <filename>
read simulation or formal results file

File formats supported: FST, VCD, AIW, WIT and .yw
VCD support requires vcd2fst external tool to be present

-append <integer>
number of extra clock cycles to simulate for a Yosys witness input

-summary <filename>
write a JSON summary to the given file

-map <filename>
read file with port and latch symbols, needed for AIGER witness input

-scope <name>
scope of simulation top model

-at <time>
sets start and stop time

-start <time>
start co-simulation in arbitary time (default 0)

-stop <time>
stop co-simulation in arbitary time (default END)

-sim
simulation with stimulus from FST (default)

-sim-cmp
co-simulation expect exact match

-sim-gold
co-simulation, x in simulation can match any value in FST

-sim-gate
co-simulation, x in FST can match any value in simulation

-assert
fail the simulation command if, in the course of simulating,
any of the asserts in the design fail

-q
disable per-cycle/sample log message

-d
enable debug output

G.193. sim - simulate the circuit 247

YosysHQ Yosys

G.194 simplemap - mapping simple coarse-grain cells

simplemap [selection]

This pass maps a small selection of simple coarse-grain cells to yosys gate
primitives. The following internal cell types are mapped by this pass:

$not, $pos, $and, $or, $xor, $xnor
$reduce_and, $reduce_or, $reduce_xor, $reduce_xnor, $reduce_bool
$logic_not, $logic_and, $logic_or, $mux, $tribuf
$sr, $ff, $dff, $dffe, $dffsr, $dffsre, $adff, $adffe, $aldff, $aldffe, $sdff,
$sdffe, $sdffce, $dlatch, $adlatch, $dlatchsr

G.195 splice - create explicit splicing cells

splice [options] [selection]

This command adds $slice and $concat cells to the design to make the splicing
of multi-bit signals explicit. This for example is useful for coarse grain
synthesis, where dedicated hardware is needed to splice signals.

-sel_by_cell
only select the cell ports to rewire by the cell. if the selection
contains a cell, than all cell inputs are rewired, if necessary.

-sel_by_wire
only select the cell ports to rewire by the wire. if the selection
contains a wire, than all cell ports driven by this wire are wired,
if necessary.

-sel_any_bit
it is sufficient if the driver of any bit of a cell port is selected.
by default all bits must be selected.

-wires
also add $slice and $concat cells to drive otherwise unused wires.

-no_outputs
do not rewire selected module outputs.

-port <name>
only rewire cell ports with the specified name. can be used multiple
times. implies -no_output.

-no_port <name>
do not rewire cell ports with the specified name. can be used multiple
times. can not be combined with -port <name>.

By default selected output wires and all cell ports of selected cells driven
by selected wires are rewired.

248 Appendix G. Command line reference

YosysHQ Yosys

G.196 splitcells - split up multi-bit cells

splitcells [options] [selection]

This command splits multi-bit cells into smaller chunks, based on usage of the
cell output bits.

This command operates only in cells such as $or, $and, and $mux, that are easily
cut into bit-slices.

-format char1[char2[char3]]
the first char is inserted between the cell name and the bit index, the
second char is appended to the cell name. e.g. -format () creates cell
names like 'mycell(42)'. the 3rd character is the range separation
character when creating multi-bit cells. the default is '[]:'.

G.197 splitnets - split up multi-bit nets

splitnets [options] [selection]

This command splits multi-bit nets into single-bit nets.

-format char1[char2[char3]]
the first char is inserted between the net name and the bit index, the
second char is appended to the netname. e.g. -format () creates net
names like 'mysignal(42)'. the 3rd character is the range separation
character when creating multi-bit wires. the default is '[]:'.

-ports
also split module ports. per default only internal signals are split.

-driver
don't blindly split nets in individual bits. instead look at the driver
and split nets so that no driver drives only part of a net.

G.196. splitcells - split up multi-bit cells 249

YosysHQ Yosys

G.198 sta - perform static timing analysis

sta [options] [selection]

This command performs static timing analysis on the design. (Only considers
paths within a single module, so the design must be flattened.)

G.199 stat - print some statistics

stat [options] [selection]

Print some statistics (number of objects) on the selected portion of the
design.

-top <module>
print design hierarchy with this module as top. if the design is fully
selected and a module has the 'top' attribute set, this module is used
default value for this option.

-liberty <liberty_file>
use cell area information from the provided liberty file

-tech <technology>
print area estemate for the specified technology. Currently supported
values for <technology>: xilinx, cmos

-width
annotate internal cell types with their word width.
e.g. $add_8 for an 8 bit wide $add cell.

-json
output the statistics in a machine-readable JSON format.
this is output to the console; use "tee" to output to a file.

G.200 submod - moving part of a module to a new submodule

submod [options] [selection]

This pass identifies all cells with the 'submod' attribute and moves them to
a newly created module. The value of the attribute is used as name for the
cell that replaces the group of cells with the same attribute value.

This pass can be used to create a design hierarchy in flat design. This can
be useful for analyzing or reverse-engineering a design.

This pass only operates on completely selected modules with no processes
or memories.

(continues on next page)

250 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-copy
by default the cells are 'moved' from the source module and the source
module will use an instance of the new module after this command is
finished. call with -copy to not modify the source module.

-name <name>
don't use the 'submod' attribute but instead use the selection. only
objects from one module might be selected. the value of the -name option
is used as the value of the 'submod' attribute instead.

-hidden
instead of creating submodule ports with public names, create ports with
private names so that a subsequent 'flatten; clean' call will restore
the original module with original public names.

G.201 supercover - add hi/lo cover cells for each wire bit

supercover [options] [selection]

This command adds two cover cells for each bit of each selected wire, one
checking for a hi signal level and one checking for lo level.

G.202 synth - generic synthesis script

synth [options]

This command runs the default synthesis script. This command does not operate
on partly selected designs.

-top <module>
use the specified module as top module (default='top')

-auto-top
automatically determine the top of the design hierarchy

-flatten
flatten the design before synthesis. this will pass '-auto-top' to
'hierarchy' if no top module is specified.

-encfile <file>
passed to 'fsm_recode' via 'fsm'

-lut <k>
perform synthesis for a k-LUT architecture.

-nofsm
do not run FSM optimization

(continues on next page)

G.201. supercover - add hi/lo cover cells for each wire bit 251

YosysHQ Yosys

(continued from previous page)

-noabc
do not run abc (as if yosys was compiled without ABC support)

-booth
run the booth pass to convert $mul to Booth encoded multipliers

-noalumacc
do not run 'alumacc' pass. i.e. keep arithmetic operators in
their direct form ($add, $sub, etc.).

-nordff
passed to 'memory'. prohibits merging of FFs into memory read ports

-noshare
do not run SAT-based resource sharing

-run <from_label>[:<to_label>]
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-abc9
use new ABC9 flow (EXPERIMENTAL)

-flowmap
use FlowMap LUT techmapping instead of ABC

-no-rw-check
marks all recognized read ports as "return don't-care value on
read/write collision" (same result as setting the no_rw_check
attribute on all memories).

The following commands are executed by this synthesis command:

begin:
hierarchy -check [-top <top> | -auto-top]

coarse:
proc
flatten (if -flatten)
opt_expr
opt_clean
check
opt -nodffe -nosdff
fsm (unless -nofsm)
opt
wreduce
peepopt
opt_clean
techmap -map +/cmp2lut.v -map +/cmp2lcu.v (if -lut)
alumacc (unless -noalumacc)

(continues on next page)

252 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

share (unless -noshare)
opt
memory -nomap
opt_clean

fine:
opt -fast -full
memory_map
opt -full
techmap
techmap -map +/gate2lut.v (if -noabc and -lut)
clean; opt_lut (if -noabc and -lut)
flowmap -maxlut K (if -flowmap and -lut)
opt -fast
abc -fast (unless -noabc, unless -lut)
abc -fast -lut k (unless -noabc, if -lut)
opt -fast (unless -noabc)

check:
hierarchy -check
stat
check

G.203 synth_achronix - synthesis for Achronix Speedster22i FPGAs.

synth_achronix [options]

This command runs synthesis for Achronix Speedster eFPGAs. This work is still␣
→˓experimental.

-top <module>
use the specified module as top module (default='top')

-vout <file>
write the design to the specified Verilog netlist file. writing of an
output file is omitted if this parameter is not specified.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-noflatten
do not flatten design before synthesis

-retime
run 'abc' with '-dff -D 1' options

(continues on next page)

G.203. synth_achronix - synthesis for Achronix Speedster22i FPGAs. 253

YosysHQ Yosys

(continued from previous page)

The following commands are executed by this synthesis command:

begin:
read_verilog -sv -lib +/achronix/speedster22i/cells_sim.v
hierarchy -check -top <top>

flatten: (unless -noflatten)
proc
flatten
tribuf -logic
deminout

coarse:
synth -run coarse

fine:
opt -fast -mux_undef -undriven -fine -full
memory_map
opt -undriven -fine
opt -fine
techmap -map +/techmap.v
opt -full
clean -purge
setundef -undriven -zero
dfflegalize -cell $_DFF_P_ x
abc -markgroups -dff -D 1 (only if -retime)

map_luts:
abc -lut 4
clean

map_cells:
iopadmap -bits -outpad $__outpad I:O -inpad $__inpad O:I
techmap -map +/achronix/speedster22i/cells_map.v
clean -purge

check:
hierarchy -check
stat
check -noinit
blackbox =A:whitebox

vout:
write_verilog -nodec -attr2comment -defparam -renameprefix syn_ <file-name>

254 Appendix G. Command line reference

YosysHQ Yosys

G.204 synth_anlogic - synthesis for Anlogic FPGAs

synth_anlogic [options]

This command runs synthesis for Anlogic FPGAs.

-top <module>
use the specified module as top module

-edif <file>
write the design to the specified EDIF file. writing of an output file
is omitted if this parameter is not specified.

-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-noflatten
do not flatten design before synthesis

-retime
run 'abc' with '-dff -D 1' options

-nolutram
do not use EG_LOGIC_DRAM16X4 cells in output netlist

-nobram
do not use EG_PHY_BRAM or EG_PHY_BRAM32K cells in output netlist

The following commands are executed by this synthesis command:

begin:
read_verilog -lib +/anlogic/cells_sim.v +/anlogic/eagle_bb.v
hierarchy -check -top <top>

flatten: (unless -noflatten)
proc
flatten
tribuf -logic
deminout

coarse:
synth -run coarse

map_ram:
memory_libmap -lib +/anlogic/lutrams.txt -lib +/anlogic/brams.txt [-no-auto-

(continues on next page)

G.204. synth_anlogic - synthesis for Anlogic FPGAs 255

YosysHQ Yosys

(continued from previous page)

→˓block] [-no-auto-distributed] (-no-auto-block if -nobram, -no-auto-distributed if -
→˓nolutram)

techmap -map +/anlogic/lutrams_map.v -map +/anlogic/brams_map.v

map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine

map_gates:
techmap -map +/techmap.v -map +/anlogic/arith_map.v
opt -fast
abc -dff -D 1 (only if -retime)

map_ffs:
dfflegalize -cell $_DFFE_P??P_ r -cell $_SDFFE_P??P_ r -cell $_DLATCH_N??_ r
techmap -D NO_LUT -map +/anlogic/cells_map.v
opt_expr -mux_undef
simplemap

map_luts:
abc -lut 4:6
clean

map_cells:
techmap -map +/anlogic/cells_map.v
clean

map_anlogic:
anlogic_fixcarry
anlogic_eqn

check:
hierarchy -check
stat
check -noinit
blackbox =A:whitebox

edif:
write_edif <file-name>

json:
write_json <file-name>

256 Appendix G. Command line reference

YosysHQ Yosys

G.205 synth_coolrunner2 - synthesis for Xilinx Coolrunner-II CPLDs

synth_coolrunner2 [options]

This command runs synthesis for Coolrunner-II CPLDs. This work is experimental.
It is intended to be used with https://github.com/azonenberg/openfpga as the
place-and-route.

-top <module>
use the specified module as top module (default='top')

-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-noflatten
do not flatten design before synthesis

-retime
run 'abc' with '-dff -D 1' options

The following commands are executed by this synthesis command:

begin:
read_verilog -lib +/coolrunner2/cells_sim.v
hierarchy -check -top <top>

flatten: (unless -noflatten)
proc
flatten
tribuf -logic

coarse:
synth -run coarse

fine:
extract_counter -dir up -allow_arst no
techmap -map +/coolrunner2/cells_counter_map.v
clean
opt -fast -full
techmap -map +/techmap.v -map +/coolrunner2/cells_latch.v
opt -fast
dfflibmap -prepare -liberty +/coolrunner2/xc2_dff.lib

map_tff:
abc -g AND,XOR

(continues on next page)

G.205. synth_coolrunner2 - synthesis for Xilinx Coolrunner-II CPLDs 257

YosysHQ Yosys

(continued from previous page)

clean
extract -map +/coolrunner2/tff_extract.v

map_pla:
abc -sop -I 40 -P 56
clean

map_cells:
dfflibmap -liberty +/coolrunner2/xc2_dff.lib
dffinit -ff FDCP Q INIT
dffinit -ff FDCP_N Q INIT
dffinit -ff FTCP Q INIT
dffinit -ff FTCP_N Q INIT
dffinit -ff LDCP Q INIT
dffinit -ff LDCP_N Q INIT
coolrunner2_sop
clean
iopadmap -bits -inpad IBUF O:I -outpad IOBUFE I:IO -inoutpad IOBUFE O:IO -

→˓toutpad IOBUFE E:I:IO -tinoutpad IOBUFE E:O:I:IO
attrmvcp -attr src -attr LOC t:IOBUFE n:*
attrmvcp -attr src -attr LOC -driven t:IBUF n:*
coolrunner2_fixup
splitnets
clean

check:
hierarchy -check
stat
check -noinit
blackbox =A:whitebox

json:
write_json <file-name>

G.206 synth_easic - synthesis for eASIC platform

synth_easic [options]

This command runs synthesis for eASIC platform.

-top <module>
use the specified module as top module

-vlog <file>
write the design to the specified structural Verilog file. writing of
an output file is omitted if this parameter is not specified.

-etools <path>
set path to the eTools installation. (default=/opt/eTools)

(continues on next page)

258 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-noflatten
do not flatten design before synthesis

-retime
run 'abc' with '-dff -D 1' options

The following commands are executed by this synthesis command:

begin:
read_liberty -lib <etools_phys_clk_lib>
read_liberty -lib <etools_logic_lut_lib>
hierarchy -check -top <top>

flatten: (unless -noflatten)
proc
flatten

coarse:
synth -run coarse

fine:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine
techmap
opt -fast
abc -dff -D 1 (only if -retime)
opt_clean (only if -retime)

map:
dfflibmap -liberty <etools_phys_clk_lib>
abc -liberty <etools_logic_lut_lib>
opt_clean

check:
hierarchy -check
stat
check -noinit
blackbox =A:whitebox

vlog:
write_verilog -noexpr -attr2comment <file-name>

G.206. synth_easic - synthesis for eASIC platform 259

YosysHQ Yosys

G.207 synth_ecp5 - synthesis for ECP5 FPGAs

synth_ecp5 [options]

This command runs synthesis for ECP5 FPGAs.

-top <module>
use the specified module as top module

-blif <file>
write the design to the specified BLIF file. writing of an output file
is omitted if this parameter is not specified.

-edif <file>
write the design to the specified EDIF file. writing of an output file
is omitted if this parameter is not specified.

-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-noflatten
do not flatten design before synthesis

-dff
run 'abc'/'abc9' with -dff option

-retime
run 'abc' with '-dff -D 1' options

-noccu2
do not use CCU2 cells in output netlist

-nodffe
do not use flipflops with CE in output netlist

-nobram
do not use block RAM cells in output netlist

-nolutram
do not use LUT RAM cells in output netlist

-nowidelut
do not use PFU muxes to implement LUTs larger than LUT4s

-asyncprld
use async PRLD mode to implement ALDFF (EXPERIMENTAL)

(continues on next page)

260 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-abc2
run two passes of 'abc' for slightly improved logic density

-noabc9
disable use of new ABC9 flow

-vpr
generate an output netlist (and BLIF file) suitable for VPR
(this feature is experimental and incomplete)

-iopad
insert IO buffers

-nodsp
do not map multipliers to MULT18X18D

-no-rw-check
marks all recognized read ports as "return don't-care value on
read/write collision" (same result as setting the no_rw_check
attribute on all memories).

The following commands are executed by this synthesis command:

begin:
read_verilog -lib -specify +/ecp5/cells_sim.v +/ecp5/cells_bb.v
hierarchy -check -top <top>

coarse:
proc
flatten
tribuf -logic
deminout
opt_expr
opt_clean
check
opt -nodffe -nosdff
fsm
opt
wreduce
peepopt
opt_clean
share
techmap -map +/cmp2lut.v -D LUT_WIDTH=4
opt_expr
opt_clean
techmap -map +/mul2dsp.v -map +/ecp5/dsp_map.v -D DSP_A_MAXWIDTH=18 -D DSP_B_

→˓MAXWIDTH=18 -D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 -D DSP_NAME=$__MUL18X18 ␣
→˓(unless -nodsp)

chtype -set $mul t:$__soft_mul (unless -nodsp)
alumacc

(continues on next page)

G.207. synth_ecp5 - synthesis for ECP5 FPGAs 261

YosysHQ Yosys

(continued from previous page)

opt
memory -nomap [-no-rw-check]
opt_clean

map_ram:
memory_libmap -lib +/ecp5/lutrams.txt -lib +/ecp5/brams.txt [-no-auto-block] [-

→˓no-auto-distributed] (-no-auto-block if -nobram, -no-auto-distributed if -nolutram)
techmap -map +/ecp5/lutrams_map.v -map +/ecp5/brams_map.v

map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine

map_gates:
techmap -map +/techmap.v -map +/ecp5/arith_map.v
iopadmap -bits -outpad OB I:O -inpad IB O:I -toutpad OBZ ~T:I:O -tinoutpad BB ~

→˓T:O:I:B A:top (only if '-iopad')
attrmvcp -attr src -attr LOC t:OB %x:+[O] t:OBZ %x:+[O] t:BB %x:+[B]
attrmvcp -attr src -attr LOC -driven t:IB %x:+[I]
opt -fast
abc -dff -D 1 (only if -retime)

map_ffs:
opt_clean
dfflegalize -cell $_DFF_?_ 01 -cell $_DFF_?P?_ r -cell $_SDFF_?P?_ r [-cell $_

→˓DFFE_??_ 01 -cell $_DFFE_?P??_ r -cell $_SDFFE_?P??_ r] [-cell $_ALDFF_?P_ x -cell $_
→˓ALDFFE_?P?_ x] [-cell $_DLATCH_?_ x] ($_ALDFF_*_ only if -asyncprld, $_DLATCH_*␣
→˓only if not -asyncprld, $_*DFFE_* only if not -nodffe)

zinit -all w:* t:$_DFF_?_ t:$_DFFE_??_ t:$_SDFF* (only if -abc9 and -dff)
techmap -D NO_LUT -map +/ecp5/cells_map.v
opt_expr -undriven -mux_undef
simplemap
lattice_gsr
attrmvcp -copy -attr syn_useioff
opt_clean

map_luts:
abc (only if -abc2)
techmap -map +/ecp5/latches_map.v (skip if -asyncprld)
abc9 -W 300
clean

map_cells:
techmap -map +/ecp5/cells_map.v (skip if -vpr)
opt_lut_ins -tech lattice
clean

check:
autoname
hierarchy -check
stat

(continues on next page)

262 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

check -noinit
blackbox =A:whitebox

blif:
opt_clean -purge (vpr mode)
write_blif -attr -cname -conn -param <file-name> (vpr mode)
write_blif -gates -attr -param <file-name> (non-vpr mode)

edif:
write_edif <file-name>

json:
write_json <file-name>

G.208 synth_efinix - synthesis for Efinix FPGAs

synth_efinix [options]

This command runs synthesis for Efinix FPGAs.

-top <module>
use the specified module as top module

-edif <file>
write the design to the specified EDIF file. writing of an output file
is omitted if this parameter is not specified.

-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-noflatten
do not flatten design before synthesis

-retime
run 'abc' with '-dff -D 1' options

-nobram
do not use EFX_RAM_5K cells in output netlist

The following commands are executed by this synthesis command:

begin:
(continues on next page)

G.208. synth_efinix - synthesis for Efinix FPGAs 263

YosysHQ Yosys

(continued from previous page)

read_verilog -lib +/efinix/cells_sim.v
hierarchy -check -top <top>

flatten: (unless -noflatten)
proc
flatten
tribuf -logic
deminout

coarse:
synth -run coarse

map_ram:
memory_libmap -lib +/efinix/brams.txt
techmap -map +/efinix/brams_map.v

map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine

map_gates:
techmap -map +/techmap.v -map +/efinix/arith_map.v
opt -fast
abc -dff -D 1 (only if -retime)

map_ffs:
dfflegalize -cell $_DFFE_????_ 0 -cell $_SDFFE_????_ 0 -cell $_SDFFCE_????_ 0 -

→˓cell $_DLATCH_?_ x
techmap -D NO_LUT -map +/efinix/cells_map.v
opt_expr -mux_undef
simplemap

map_luts:
abc -lut 4
clean

map_cells:
techmap -map +/efinix/cells_map.v
clean

map_gbuf:
clkbufmap -buf $__EFX_GBUF O:I
techmap -map +/efinix/gbuf_map.v
efinix_fixcarry
clean

check:
hierarchy -check
stat
check -noinit
blackbox =A:whitebox

(continues on next page)

264 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

edif:
write_edif <file-name>

json:
write_json <file-name>

G.209 synth_fabulous - FABulous synthesis script

synth_fabulous [options]

This command runs synthesis for FPGA fabrics generated with FABulous. This command does␣
→˓not operate
on partly selected designs.

-top <module>
use the specified module as top module (default='top')

-auto-top
automatically determine the top of the design hierarchy

-blif <file>
write the design to the specified BLIF file. writing of an output file
is omitted if this parameter is not specified.

-edif <file>
write the design to the specified EDIF file. writing of an output file
is omitted if this parameter is not specified.

-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.

-lut <k>
perform synthesis for a k-LUT architecture (default 4).

-vpr
perform synthesis for the FABulous VPR flow (using slightly different␣

→˓techmapping).

-plib <primitive_library.v>
use the specified Verilog file as a primitive library.

-extra-plib <primitive_library.v>
use the specified Verilog file for extra primitives (can be specified multiple
times).

-extra-map <techamp.v>
use the specified Verilog file for extra techmap rules (can be specified multiple

(continues on next page)

G.209. synth_fabulous - FABulous synthesis script 265

YosysHQ Yosys

(continued from previous page)

times).

-encfile <file>
passed to 'fsm_recode' via 'fsm'

-nofsm
do not run FSM optimization

-noalumacc
do not run 'alumacc' pass. i.e. keep arithmetic operators in
their direct form ($add, $sub, etc.).

-carry <none|ha>
carry mapping style (none, half-adders, ...) default=none

-noregfile
do not map register files

-iopad
enable automatic insertion of IO buffers (otherwise a wrapper
with manually inserted and constrained IO should be used.)

-complex-dff
enable support for FFs with enable and synchronous SR (must also be
supported by the target fabric.)

-noflatten
do not flatten design after elaboration

-nordff
passed to 'memory'. prohibits merging of FFs into memory read ports

-noshare
do not run SAT-based resource sharing

-run <from_label>[:<to_label>]
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-no-rw-check
marks all recognized read ports as "return don't-care value on
read/write collision" (same result as setting the no_rw_check
attribute on all memories).

The following commands are executed by this synthesis command:
read_verilog -lib +/fabulous/prims.v
read_verilog -lib <extra_plib.v> (for each -extra-plib)

begin:
hierarchy -check

(continues on next page)

266 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

proc

flatten: (unless -noflatten)
flatten
tribuf -logic
deminout

coarse:
tribuf -logic
deminout
opt_expr
opt_clean
check
opt -nodffe -nosdff
fsm (unless -nofsm)
opt
wreduce
peepopt
opt_clean
techmap -map +/cmp2lut.v -map +/cmp2lcu.v (if -lut)
alumacc (unless -noalumacc)
share (unless -noshare)
opt
memory -nomap
opt_clean

map_ram:
memory_libmap -lib +/fabulous/ram_regfile.txt
techmap -map +/fabulous/regfile_map.v

map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine

map_gates:
opt -full
techmap -map +/techmap.v -map +/fabulous/arith_map.v -D ARITH_<carry>
opt -fast

map_iopad: (if -iopad)

map_ffs:
dfflegalize -cell $_DFF_P_ 0 -cell $_DLATCH_?_ x without -complex-dff
techmap -map +/fabulous/latches_map.v
techmap -map +/fabulous/ff_map.v
techmap -map <extra_map.v>... (for each -extra-map)
clean

map_luts:
abc -lut 4 -dress
clean

(continues on next page)

G.209. synth_fabulous - FABulous synthesis script 267

YosysHQ Yosys

(continued from previous page)

map_cells:
techmap -D LUT_K=4 -map +/fabulous/cells_map.v
clean

check:
hierarchy -check
stat

blif:
opt_clean -purge
write_blif -attr -cname -conn -param <file-name>

json:
write_json <file-name>

G.210 synth_gatemate - synthesis for Cologne Chip GateMate FPGAs

synth_gatemate [options]

This command runs synthesis for Cologne Chip AG GateMate FPGAs.

-top <module>
use the specified module as top module.

-vlog <file>
write the design to the specified verilog file. Writing of an output
file is omitted if this parameter is not specified.

-json <file>
write the design to the specified JSON file. Writing of an output file
is omitted if this parameter is not specified.

-run <from_label>:<to_label>
only run the commands between the labels (see below). An empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-noflatten
do not flatten design before synthesis.

-nobram
do not use CC_BRAM_20K or CC_BRAM_40K cells in output netlist.

-noaddf
do not use CC_ADDF full adder cells in output netlist.

-nomult
do not use CC_MULT multiplier cells in output netlist.

(continues on next page)

268 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-nomx8, -nomx4
do not use CC_MX{8,4} multiplexer cells in output netlist.

-luttree
use new LUT tree mapping approach (EXPERIMENTAL).

-dff
run 'abc' with -dff option

-retime
run 'abc' with '-dff -D 1' options

-noiopad
disable I/O buffer insertion (useful for hierarchical or
out-of-context flows).

-noclkbuf
disable automatic clock buffer insertion.

The following commands are executed by this synthesis command:

begin:
read_verilog -lib -specify +/gatemate/cells_sim.v +/gatemate/cells_bb.v
hierarchy -check -top <top>

prepare:
proc
flatten
tribuf -logic
deminout
opt_expr
opt_clean
check
opt -nodffe -nosdff
fsm
opt
wreduce
peepopt
opt_clean
muxpack
share
techmap -map +/cmp2lut.v -D LUT_WIDTH=4
opt_expr
opt_clean

map_mult: (skip if '-nomult')
techmap -map +/gatemate/mul_map.v

coarse:
alumacc
opt

(continues on next page)

G.210. synth_gatemate - synthesis for Cologne Chip GateMate FPGAs 269

YosysHQ Yosys

(continued from previous page)

memory -nomap
opt_clean

map_bram: (skip if '-nobram')
memory_libmap -lib +/gatemate/brams.txt
techmap -map +/gatemate/brams_map.v

map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine

map_gates:
techmap -map +/techmap.v -map +/gatemate/arith_map.v
opt -fast

map_io: (skip if '-noiopad')
iopadmap -bits -inpad CC_IBUF Y:I -outpad CC_OBUF A:O -toutpad CC_TOBUF ~T:A:O -

→˓tinoutpad CC_IOBUF ~T:Y:A:IO
clean

map_regs:
opt_clean
dfflegalize -cell $_DFFE_????_ 01 -cell $_DLATCH_???_ 01
techmap -map +/gatemate/reg_map.v
opt_expr -mux_undef
simplemap
opt_clean

map_muxs:
muxcover -mux4 -mux8
opt -full
techmap -map +/gatemate/mux_map.v

map_luts:
abc -genlib +/gatemate/lut_tree_cells.genlib (with -luttree)
techmap -map +/gatemate/lut_tree_map.v (with -luttree)
gatemate_foldinv (with -luttree)
techmap -map +/gatemate/inv_map.v (with -luttree)
abc -dress -lut 4 (without -luttree)
clean

map_cells:
techmap -map +/gatemate/lut_map.v
clean

map_bufg: (skip if '-noclkbuf')
clkbufmap -buf CC_BUFG O:I
clean

check:
hierarchy -check

(continues on next page)

270 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

stat -width
check -noinit
blackbox =A:whitebox

vlog:
opt_clean -purge
write_verilog -noattr <file-name>

json:
write_json <file-name>

G.211 synth_gowin - synthesis for Gowin FPGAs

synth_gowin [options]

This command runs synthesis for Gowin FPGAs. This work is experimental.

-top <module>
use the specified module as top module (default='top')

-vout <file>
write the design to the specified Verilog netlist file. writing of an
output file is omitted if this parameter is not specified.

-json <file>
write the design to the specified JSON netlist file. writing of an
output file is omitted if this parameter is not specified.
This disables features not yet supported by nexpnr-gowin.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-nodffe
do not use flipflops with CE in output netlist

-nobram
do not use BRAM cells in output netlist

-nolutram
do not use distributed RAM cells in output netlist

-noflatten
do not flatten design before synthesis

-retime
run 'abc' with '-dff -D 1' options

(continues on next page)

G.211. synth_gowin - synthesis for Gowin FPGAs 271

YosysHQ Yosys

(continued from previous page)

-nowidelut
do not use muxes to implement LUTs larger than LUT4s

-noiopads
do not emit IOB at top level ports

-noalu
do not use ALU cells

-noabc9
disable use of new ABC9 flow

-no-rw-check
marks all recognized read ports as "return don't-care value on
read/write collision" (same result as setting the no_rw_check
attribute on all memories).

The following commands are executed by this synthesis command:

begin:
read_verilog -specify -lib +/gowin/cells_sim.v
read_verilog -specify -lib +/gowin/cells_xtra.v
hierarchy -check -top <top>

flatten: (unless -noflatten)
proc
flatten
tribuf -logic
deminout

coarse:
synth -run coarse [-no-rw-check]

map_ram:
memory_libmap -lib +/gowin/lutrams.txt -lib +/gowin/brams.txt [-no-auto-block] [-

→˓no-auto-distributed] (-no-auto-block if -nobram, -no-auto-distributed if -nolutram)
techmap -map +/gowin/lutrams_map.v -map +/gowin/brams_map.v

map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine

map_gates:
techmap -map +/techmap.v -map +/gowin/arith_map.v
opt -fast
abc -dff -D 1 (only if -retime)
iopadmap -bits -inpad IBUF O:I -outpad OBUF I:O -toutpad TBUF ~OEN:I:O -

→˓tinoutpad IOBUF ~OEN:O:I:IO (unless -noiopads)

map_ffs:
(continues on next page)

272 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

opt_clean
dfflegalize -cell $_DFF_?_ 0 -cell $_DFFE_?P_ 0 -cell $_SDFF_?P?_ r -cell $_

→˓SDFFE_?P?P_ r -cell $_DFF_?P?_ r -cell $_DFFE_?P?P_ r
techmap -map +/gowin/cells_map.v
opt_expr -mux_undef
simplemap

map_luts:
read_verilog -icells -lib -specify +/abc9_model.v
abc9 -maxlut 8 -W 500
clean

map_cells:
techmap -map +/gowin/cells_map.v
opt_lut_ins -tech gowin
setundef -undriven -params -zero
hilomap -singleton -hicell VCC V -locell GND G
splitnets -ports (only if -vout used)
clean
autoname

check:
hierarchy -check
stat
check -noinit
blackbox =A:whitebox

vout:
write_verilog -simple-lhs -decimal -attr2comment -defparam -renameprefix gen

→˓<file-name>
write_json <file-name>

G.212 synth_greenpak4 - synthesis for GreenPAK4 FPGAs

synth_greenpak4 [options]

This command runs synthesis for GreenPAK4 FPGAs. This work is experimental.
It is intended to be used with https://github.com/azonenberg/openfpga as the
place-and-route.

-top <module>
use the specified module as top module (default='top')

-part <part>
synthesize for the specified part. Valid values are SLG46140V,
SLG46620V, and SLG46621V (default).

-json <file>
write the design to the specified JSON file. writing of an output file

(continues on next page)

G.212. synth_greenpak4 - synthesis for GreenPAK4 FPGAs 273

YosysHQ Yosys

(continued from previous page)

is omitted if this parameter is not specified.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-noflatten
do not flatten design before synthesis

-retime
run 'abc' with '-dff -D 1' options

The following commands are executed by this synthesis command:

begin:
read_verilog -lib +/greenpak4/cells_sim.v
hierarchy -check -top <top>

flatten: (unless -noflatten)
proc
flatten
tribuf -logic

coarse:
synth -run coarse

fine:
extract_counter -pout GP_DCMP,GP_DAC -maxwidth 14
clean
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine
techmap -map +/techmap.v -map +/greenpak4/cells_latch.v
dfflibmap -prepare -liberty +/greenpak4/gp_dff.lib
opt -fast -noclkinv -noff
abc -dff -D 1 (only if -retime)

map_luts:
nlutmap -assert -luts 0,6,8,2 (for -part SLG46140V)
nlutmap -assert -luts 2,8,16,2 (for -part SLG46620V)
nlutmap -assert -luts 2,8,16,2 (for -part SLG46621V)
clean

map_cells:
shregmap -tech greenpak4
dfflibmap -liberty +/greenpak4/gp_dff.lib
dffinit -ff GP_DFF Q INIT
dffinit -ff GP_DFFR Q INIT
dffinit -ff GP_DFFS Q INIT
dffinit -ff GP_DFFSR Q INIT

(continues on next page)

274 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

iopadmap -bits -inpad GP_IBUF OUT:IN -outpad GP_OBUF IN:OUT -inoutpad GP_OBUF␣
→˓OUT:IN -toutpad GP_OBUFT OE:IN:OUT -tinoutpad GP_IOBUF OE:OUT:IN:IO

attrmvcp -attr src -attr LOC t:GP_OBUF t:GP_OBUFT t:GP_IOBUF n:*
attrmvcp -attr src -attr LOC -driven t:GP_IBUF n:*
techmap -map +/greenpak4/cells_map.v
greenpak4_dffinv
clean

check:
hierarchy -check
stat
check -noinit
blackbox =A:whitebox

json:
write_json <file-name>

G.213 synth_ice40 - synthesis for iCE40 FPGAs

synth_ice40 [options]

This command runs synthesis for iCE40 FPGAs.

-device < hx | lp | u >
relevant only for '-abc9' flow, optimise timing for the specified
device. default: hx

-top <module>
use the specified module as top module

-blif <file>
write the design to the specified BLIF file. writing of an output file
is omitted if this parameter is not specified.

-edif <file>
write the design to the specified EDIF file. writing of an output file
is omitted if this parameter is not specified.

-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-noflatten
do not flatten design before synthesis

(continues on next page)

G.213. synth_ice40 - synthesis for iCE40 FPGAs 275

YosysHQ Yosys

(continued from previous page)

-dff
run 'abc'/'abc9' with -dff option

-retime
run 'abc' with '-dff -D 1' options

-nocarry
do not use SB_CARRY cells in output netlist

-nodffe
do not use SB_DFFE* cells in output netlist

-dffe_min_ce_use <min_ce_use>
do not use SB_DFFE* cells if the resulting CE line would go to less
than min_ce_use SB_DFFE* in output netlist

-nobram
do not use SB_RAM40_4K* cells in output netlist

-spram
enable automatic inference of SB_SPRAM256KA

-dsp
use iCE40 UltraPlus DSP cells for large arithmetic

-noabc
use built-in Yosys LUT techmapping instead of abc

-abc2
run two passes of 'abc' for slightly improved logic density

-vpr
generate an output netlist (and BLIF file) suitable for VPR
(this feature is experimental and incomplete)

-noabc9
disable use of new ABC9 flow

-flowmap
use FlowMap LUT techmapping instead of abc (EXPERIMENTAL)

-no-rw-check
marks all recognized read ports as "return don't-care value on
read/write collision" (same result as setting the no_rw_check
attribute on all memories).

The following commands are executed by this synthesis command:

begin:
read_verilog -D ICE40_HX -lib -specify +/ice40/cells_sim.v

(continues on next page)

276 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

hierarchy -check -top <top>
proc

flatten: (unless -noflatten)
flatten
tribuf -logic
deminout

coarse:
opt_expr
opt_clean
check
opt -nodffe -nosdff
fsm
opt
wreduce
peepopt
opt_clean
share
techmap -map +/cmp2lut.v -D LUT_WIDTH=4
opt_expr
opt_clean
memory_dff [-no-rw-check]
wreduce t:$mul
techmap -map +/mul2dsp.v -map +/ice40/dsp_map.v -D DSP_A_MAXWIDTH=16 -D DSP_B_

→˓MAXWIDTH=16 -D DSP_A_MINWIDTH=2 -D DSP_B_MINWIDTH=2 -D DSP_Y_MINWIDTH=11 -D DSP_NAME=$_
→˓_MUL16X16 (if -dsp)

select a:mul2dsp (if -dsp)
setattr -unset mul2dsp (if -dsp)
opt_expr -fine (if -dsp)
wreduce (if -dsp)
select -clear (if -dsp)
ice40_dsp (if -dsp)
chtype -set $mul t:$__soft_mul (if -dsp)
alumacc
opt
memory -nomap [-no-rw-check]
opt_clean

map_ram:
memory_libmap -lib +/ice40/brams.txt -lib +/ice40/spram.txt -no-auto-huge [-no-

→˓auto-huge] [-no-auto-block] (-no-auto-huge unless -spram, -no-auto-block if -nobram)
techmap -map +/ice40/brams_map.v -map +/ice40/spram_map.v
ice40_braminit

map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine

map_gates:
ice40_wrapcarry

(continues on next page)

G.213. synth_ice40 - synthesis for iCE40 FPGAs 277

YosysHQ Yosys

(continued from previous page)

techmap -map +/techmap.v -map +/ice40/arith_map.v
opt -fast
abc -dff -D 1 (only if -retime)
ice40_opt

map_ffs:
dfflegalize -cell $_DFF_?_ 0 -cell $_DFFE_?P_ 0 -cell $_DFF_?P?_ 0 -cell $_DFFE_?

→˓P?P_ 0 -cell $_SDFF_?P?_ 0 -cell $_SDFFCE_?P?P_ 0 -cell $_DLATCH_?_ x -mince -1
techmap -map +/ice40/ff_map.v
opt_expr -mux_undef
simplemap
ice40_opt -full

map_luts:
abc (only if -abc2)
ice40_opt (only if -abc2)
techmap -map +/ice40/latches_map.v
simplemap (if -noabc or -flowmap)
techmap -map +/gate2lut.v -D LUT_WIDTH=4 (only if -noabc)
flowmap -maxlut 4 (only if -flowmap)
read_verilog -D ICE40_HX -icells -lib -specify +/ice40/abc9_model.v
abc9 -W 250
ice40_wrapcarry -unwrap
techmap -map +/ice40/ff_map.v
clean
opt_lut -dlogic SB_CARRY:I0=1:I1=2:CI=3 -dlogic SB_CARRY:CO=3

map_cells:
techmap -map +/ice40/cells_map.v (skip if -vpr)
clean

check:
autoname
hierarchy -check
stat
check -noinit
blackbox =A:whitebox

blif:
opt_clean -purge (vpr mode)
write_blif -attr -cname -conn -param <file-name> (vpr mode)
write_blif -gates -attr -param <file-name> (non-vpr mode)

edif:
write_edif <file-name>

json:
write_json <file-name>

278 Appendix G. Command line reference

YosysHQ Yosys

G.214 synth_intel - synthesis for Intel (Altera) FPGAs.

synth_intel [options]

This command runs synthesis for Intel FPGAs.

-family <max10 | cyclone10lp | cycloneiv | cycloneive>
generate the synthesis netlist for the specified family.
MAX10 is the default target if no family argument specified.
For Cyclone IV GX devices, use cycloneiv argument; for Cyclone IV E, use
cycloneive. For Cyclone V and Cyclone 10 GX, use the synth_intel_alm
backend instead.

-top <module>
use the specified module as top module (default='top')

-vqm <file>
write the design to the specified Verilog Quartus Mapping File. Writing
of an output file is omitted if this parameter is not specified.
Note that this backend has not been tested and is likely incompatible
with recent versions of Quartus.

-vpr <file>
write BLIF files for VPR flow experiments. The synthesized BLIF output
file is not compatible with the Quartus flow. Writing of an
output file is omitted if this parameter is not specified.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-iopads
use IO pad cells in output netlist

-nobram
do not use block RAM cells in output netlist

-noflatten
do not flatten design before synthesis

-retime
run 'abc' with '-dff -D 1' options

The following commands are executed by this synthesis command:

begin:

family:
read_verilog -sv -lib +/intel/max10/cells_sim.v
read_verilog -sv -lib +/intel/common/m9k_bb.v
read_verilog -sv -lib +/intel/common/altpll_bb.v

(continues on next page)

G.214. synth_intel - synthesis for Intel (Altera) FPGAs. 279

YosysHQ Yosys

(continued from previous page)

hierarchy -check -top <top>

flatten: (unless -noflatten)
proc
flatten
tribuf -logic
deminout

coarse:
synth -run coarse

map_bram: (skip if -nobram)
memory_bram -rules +/intel/common/brams_m9k.txt (if applicable for family)
techmap -map +/intel/common/brams_map_m9k.v (if applicable for family)

map_ffram:
opt -fast -mux_undef -undriven -fine -full
memory_map
opt -undriven -fine
techmap -map +/techmap.v
opt -full
clean -purge
setundef -undriven -zero
abc -markgroups -dff -D 1 (only if -retime)

map_ffs:
dfflegalize -cell $_DFFE_PN0P_ 01
techmap -map +/intel/common/ff_map.v

map_luts:
abc -lut 4
clean

map_cells:
iopadmap -bits -outpad $__outpad I:O -inpad $__inpad O:I (if -iopads)
techmap -map +/intel/max10/cells_map.v
clean -purge

check:
hierarchy -check
stat
check -noinit
blackbox =A:whitebox

vqm:
write_verilog -attr2comment -defparam -nohex -decimal -renameprefix syn_ <file-

→˓name>

vpr:
opt_clean -purge
write_blif <file-name>

(continues on next page)

280 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

WARNING: THE 'synth_intel' COMMAND IS EXPERIMENTAL.

G.215 synth_intel_alm - synthesis for ALM-based Intel (Altera) FPGAs.

synth_intel_alm [options]

This command runs synthesis for ALM-based Intel FPGAs.

-top <module>
use the specified module as top module

-family <family>
target one of:
"cyclonev" - Cyclone V (default)
"arriav" - Arria V (non-GZ)
"cyclone10gx" - Cyclone 10GX

-vqm <file>
write the design to the specified Verilog Quartus Mapping File. Writing
of an output file is omitted if this parameter is not specified. Implies
-quartus.

-noflatten
do not flatten design before synthesis; useful for per-module area
statistics

-quartus
output a netlist using Quartus cells instead of MISTRAL_* cells

-dff
pass DFFs to ABC to perform sequential logic optimisations
(EXPERIMENTAL)

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-nolutram
do not use LUT RAM cells in output netlist

-nobram
do not use block RAM cells in output netlist

-nodsp
do not map multipliers to MISTRAL_MUL cells

-noiopad
(continues on next page)

G.215. synth_intel_alm - synthesis for ALM-based Intel (Altera) FPGAs. 281

YosysHQ Yosys

(continued from previous page)

do not instantiate IO buffers

-noclkbuf
do not insert global clock buffers

The following commands are executed by this synthesis command:

begin:
read_verilog -specify -lib -D <family> +/intel_alm/common/alm_sim.v
read_verilog -specify -lib -D <family> +/intel_alm/common/dff_sim.v
read_verilog -specify -lib -D <family> +/intel_alm/common/dsp_sim.v
read_verilog -specify -lib -D <family> +/intel_alm/common/mem_sim.v
read_verilog -specify -lib -D <family> +/intel_alm/common/misc_sim.v
read_verilog -specify -lib -D <family> -icells +/intel_alm/common/abc9_model.v
read_verilog -lib +/intel/common/altpll_bb.v
read_verilog -lib +/intel_alm/common/megafunction_bb.v
hierarchy -check -top <top>

coarse:
proc
flatten (skip if -noflatten)
tribuf -logic
deminout
opt_expr
opt_clean
check
opt -nodffe -nosdff
fsm
opt
wreduce
peepopt
opt_clean
share
techmap -map +/cmp2lut.v -D LUT_WIDTH=6
opt_expr
opt_clean
techmap -map +/mul2dsp.v [...] (unless -nodsp)
alumacc
iopadmap -bits -outpad MISTRAL_OB I:PAD -inpad MISTRAL_IB O:PAD -toutpad MISTRAL_

→˓IO OE:O:PAD -tinoutpad MISTRAL_IO OE:O:I:PAD A:top (unless -noiopad)
techmap -map +/intel_alm/common/arith_alm_map.v -map +/intel_alm/common/dsp_map.v
opt
memory -nomap
opt_clean

map_bram: (skip if -nobram)
memory_bram -rules +/intel_alm/common/bram_<bram_type>.txt
techmap -map +/intel_alm/common/bram_<bram_type>_map.v

map_lutram: (skip if -nolutram)
memory_bram -rules +/intel_alm/common/lutram_mlab.txt (for Cyclone V /␣

→˓Cyclone 10GX)
(continues on next page)

282 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

map_ffram:
memory_map
opt -full

map_ffs:
techmap
dfflegalize -cell $_DFFE_PN0P_ 0 -cell $_SDFFCE_PP0P_ 0
techmap -map +/intel_alm/common/dff_map.v
opt -full -undriven -mux_undef
clean -purge
clkbufmap -buf MISTRAL_CLKBUF Q:A (unless -noclkbuf)

map_luts:
techmap -map +/intel_alm/common/abc9_map.v
abc9 [-dff] -maxlut 6 -W 600
techmap -map +/intel_alm/common/abc9_unmap.v
techmap -map +/intel_alm/common/alm_map.v
opt -fast
autoname
clean

check:
hierarchy -check
stat
check
blackbox =A:whitebox

quartus:
rename -hide w:*[* w:*]*
setundef -zero
hilomap -singleton -hicell __MISTRAL_VCC Q -locell __MISTRAL_GND Q
techmap -D <family> -map +/intel_alm/common/quartus_rename.v

vqm:
write_verilog -attr2comment -defparam -nohex -decimal <file-name>

G.216 synth_lattice - synthesis for Lattice FPGAs

synth_lattice [options]

This command runs synthesis for Lattice FPGAs (excluding iCE40 and Nexus).

-top <module>
use the specified module as top module

-family <family>
run synthesis for the specified Lattice architecture
generate the synthesis netlist for the specified family.

(continues on next page)

G.216. synth_lattice - synthesis for Lattice FPGAs 283

YosysHQ Yosys

(continued from previous page)

supported values:
- ecp5: ECP5
- xo2: MachXO2
- xo3: MachXO3L/LF
- xo3d: MachXO3D

-edif <file>
write the design to the specified EDIF file. writing of an output file
is omitted if this parameter is not specified.

-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-noflatten
do not flatten design before synthesis

-dff
run 'abc'/'abc9' with -dff option

-retime
run 'abc' with '-dff -D 1' options

-noccu2
do not use CCU2 cells in output netlist

-nodffe
do not use flipflops with CE in output netlist

-nobram
do not use block RAM cells in output netlist

-nolutram
do not use LUT RAM cells in output netlist

-nowidelut
do not use PFU muxes to implement LUTs larger than LUT4s
(by default enabled on MachXO2/XO3/XO3D)

-widelut
force use of PFU muxes to implement LUTs larger than LUT4s

-asyncprld
use async PRLD mode to implement ALDFF (EXPERIMENTAL)

-abc2
run two passes of 'abc' for slightly improved logic density

(continues on next page)

284 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-abc9
use new ABC9 flow (EXPERIMENTAL)

-iopad
insert IO buffers

-nodsp
do not map multipliers to MULT18X18D

-no-rw-check
marks all recognized read ports as "return don't-care value on
read/write collision" (same result as setting the no_rw_check
attribute on all memories).

-cmp2softlogic
implement constant comparisons in soft logic, do not involve
hard carry chains

The following commands are executed by this synthesis command:

begin:
read_verilog -lib -specify +/lattice/cells_sim.v +/lattice/cells_bb.v
hierarchy -check -top <top>

coarse:
proc
flatten
tribuf -logic
deminout
opt_expr
opt_clean
check
opt -nodffe -nosdff
fsm
opt
wreduce
peepopt
opt_clean
share
techmap -map +/cmp2lut.v -D LUT_WIDTH=4
opt_expr
opt_clean
booth (only if '-family xo3')
alumacc
opt
memory -nomap [-no-rw-check]
opt_clean

map_ram:
memory_libmap -lib +/lattice/lutrams.txt -lib +/lattice/brams.txt [-no-auto-

(continues on next page)

G.216. synth_lattice - synthesis for Lattice FPGAs 285

YosysHQ Yosys

(continued from previous page)

→˓block] [-no-auto-distributed] (-no-auto-block if -nobram, -no-auto-distributed if -
→˓nolutram)

techmap -map +/lattice/lutrams_map.v -map +/lattice/brams_map.v

map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine -mux_undef

map_gates:
techmap -map +/techmap.v -map +/lattice/arith_map.v
iopadmap -bits -outpad OB I:O -inpad IB O:I -toutpad OBZ ~T:I:O -tinoutpad BB ~

→˓T:O:I:B A:top (only if '-iopad')
attrmvcp -attr src -attr LOC t:OB %x:+[O] t:OBZ %x:+[O] t:BB %x:+[B]
attrmvcp -attr src -attr LOC -driven t:IB %x:+[I]
opt -fast
abc -dff -D 1 (only if -retime)

map_ffs:
opt_clean
dfflegalize -cell $_DFF_?_ 01 -cell $_DFF_?P?_ r -cell $_SDFF_?P?_ r [-cell $_

→˓DFFE_??_ 01 -cell $_DFFE_?P??_ r -cell $_SDFFE_?P??_ r] [-cell $_ALDFF_?P_ x -cell $_
→˓ALDFFE_?P?_ x] [-cell $_DLATCH_?_ x] ($_ALDFF_*_ only if -asyncprld, $_DLATCH_*␣
→˓only if not -asyncprld, $_*DFFE_* only if not -nodffe)

opt_merge
zinit -all w:* t:$_DFF_?_ t:$_DFFE_??_ t:$_SDFF* (only if -abc9 and -dff)
techmap -D NO_LUT -map +/lattice/cells_map.v
opt_expr -undriven -mux_undef
simplemap
lattice_gsr
attrmvcp -copy -attr syn_useioff
opt_clean

map_luts:
abc (only if -abc2)
techmap -map +/lattice/latches_map.v (skip if -asyncprld)
abc -dress -lut 4:7
clean

map_cells:
techmap -map +/lattice/cells_map.v
opt_lut_ins -tech lattice
clean

check:
autoname
hierarchy -check
stat
check -noinit
blackbox =A:whitebox

edif:
(continues on next page)

286 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

write_edif <file-name>

json:
write_json <file-name>

G.217 synth_nexus - synthesis for Lattice Nexus FPGAs

synth_nexus [options]

This command runs synthesis for Lattice Nexus FPGAs.

-top <module>
use the specified module as top module

-family <device>
run synthesis for the specified Nexus device
supported values: lifcl, lfd2nx

-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.

-vm <file>
write the design to the specified structural Verilog file. writing of
an output file is omitted if this parameter is not specified.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-noflatten
do not flatten design before synthesis

-dff
run 'abc'/'abc9' with -dff option

-retime
run 'abc' with '-dff -D 1' options

-noccu2
do not use CCU2 cells in output netlist

-nodffe
do not use flipflops with CE in output netlist

-nolram
do not use large RAM cells in output netlist
note that large RAM must be explicitly requested with a (* lram *)

(continues on next page)

G.217. synth_nexus - synthesis for Lattice Nexus FPGAs 287

YosysHQ Yosys

(continued from previous page)

attribute on the memory.

-nobram
do not use block RAM cells in output netlist

-nolutram
do not use LUT RAM cells in output netlist

-nowidelut
do not use PFU muxes to implement LUTs larger than LUT4s

-noiopad
do not insert IO buffers

-nodsp
do not infer DSP multipliers

-abc9
use new ABC9 flow (EXPERIMENTAL)

The following commands are executed by this synthesis command:

begin:
read_verilog -lib -specify +/nexus/cells_sim.v +/nexus/cells_xtra.v
hierarchy -check -top <top>

coarse:
proc
flatten
tribuf -logic
deminout
opt_expr
opt_clean
check
opt -nodffe -nosdff
fsm
opt
wreduce
peepopt
opt_clean
share
techmap -map +/cmp2lut.v -D LUT_WIDTH=4
opt_expr
opt_clean
techmap -map +/mul2dsp.v [...] (unless -nodsp)
techmap -map +/nexus/dsp_map.v (unless -nodsp)
alumacc
opt
memory -nomap
opt_clean

map_ram:
(continues on next page)

288 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

memory_libmap -lib +/nexus/lutrams.txt -lib +/nexus/brams.txt -lib +/nexus/lrams.
→˓txt -no-auto-huge [-no-auto-block] [-no-auto-distributed] (-no-auto-block if -
→˓nobram, -no-auto-distributed if -nolutram)

techmap -map +/nexus/lutrams_map.v -map +/nexus/brams_map.v -map +/nexus/lrams_
→˓map.v

map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine

map_gates:
techmap -map +/techmap.v -map +/nexus/arith_map.v
iopadmap -bits -outpad OB I:O -inpad IB O:I -toutpad OBZ ~T:I:O -tinoutpad BB ~

→˓T:O:I:B A:top (skip if '-noiopad')
opt -fast
abc -dff -D 1 (only if -retime)

map_ffs:
opt_clean
dfflegalize -cell $_DFF_P_ 01 -cell $_DFF_PP?_ r -cell $_SDFF_PP?_ r -cell $_

→˓DLATCH_?_ x [-cell $_DFFE_PP_ 01 -cell $_DFFE_PP?P_ r -cell $_SDFFE_PP?P_ r] ($_
→˓*DFFE_* only if not -nodffe)

zinit -all w:* t:$_DFF_?_ t:$_DFFE_??_ t:$_SDFF* (only if -abc9 and -dff
techmap -D NO_LUT -map +/nexus/cells_map.v
opt_expr -undriven -mux_undef
simplemap
attrmvcp -copy -attr syn_useioff
opt_clean

map_luts:
techmap -map +/nexus/latches_map.v
abc -dress -lut 4:5
clean

map_cells:
techmap -map +/nexus/cells_map.v
setundef -zero
hilomap -singleton -hicell VHI Z -locell VLO Z
clean

check:
autoname
hierarchy -check
stat
check -noinit
blackbox =A:whitebox

json:
write_json <file-name>

vm:
(continues on next page)

G.217. synth_nexus - synthesis for Lattice Nexus FPGAs 289

YosysHQ Yosys

(continued from previous page)

write_verilog <file-name>

G.218 synth_quicklogic - Synthesis for QuickLogic FPGAs

synth_quicklogic [options]
This command runs synthesis for QuickLogic FPGAs

-top <module>
use the specified module as top module

-family <family>
run synthesis for the specified QuickLogic architecture
generate the synthesis netlist for the specified family.
supported values:
- pp3: PolarPro 3
- qlf_k6n10f: K6N10f

-nodsp
do not use dsp_t1_* to implement multipliers and associated logic
(qlf_k6n10f only).

-nocarry
do not use adder_carry cells in output netlist.

-nobram
do not use block RAM cells in output netlist.

-bramtypes
Emit specialized BRAM cells for particular address and data width
configurations.

-blif <file>
write the design to the specified BLIF file. writing of an output file
is omitted if this parameter is not specified.

-verilog <file>
write the design to the specified verilog file. writing of an output
file is omitted if this parameter is not specified.

-abc
use old ABC flow, which has generally worse mapping results but is less
likely to have bugs.

The following commands are executed by this synthesis command:

begin:
read_verilog -lib -specify +/quicklogic/common/cells_sim.v +/quicklogic/<family>/

→˓cells_sim.v
hierarchy -check -top <top>

(continues on next page)

290 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

prepare:
proc
flatten
tribuf -logic (for pp3)
deminout
opt_expr
opt_clean
check
opt -nodffe -nosdff
fsm
opt
wreduce
peepopt
opt_clean
share

map_dsp: (for qlf_k6n10f, skip if -nodsp)
wreduce t:$mul
ql_dsp_macc
techmap -map +/mul2dsp.v -D DSP_A_MAXWIDTH=20 -D DSP_B_MAXWIDTH=18 -D DSP_A_

→˓MINWIDTH=11 -D DSP_B_MINWIDTH=10 -D DSP_NAME=$__QL_MUL20X18
techmap -map +/mul2dsp.v -D DSP_A_MAXWIDTH=10 -D DSP_B_MAXWIDTH=9 -D DSP_A_

→˓MINWIDTH=4 -D DSP_B_MINWIDTH=4 -D DSP_NAME=$__QL_MUL10X9
chtype -set $mul t:$__soft_mul
techmap -map +/quicklogic/<family>/dsp_map.v -D USE_DSP_CFG_PARAMS=0
ql_dsp_simd
techmap -map +/quicklogic/<family>/dsp_final_map.v
ql_dsp_io_regs

coarse:
techmap -map +/cmp2lut.v -D LUT_WIDTH=4
opt_expr
opt_clean
alumacc
pmuxtree
opt
memory -nomap
opt_clean

map_bram: (for qlf_k6n10f, skip if -no_bram)
memory_libmap -lib +/quicklogic/<family>/libmap_brams.txt
ql_bram_merge
techmap -map +/quicklogic/<family>/libmap_brams_map.v
techmap -autoproc -map +/quicklogic/<family>/brams_map.v
ql_bram_types (if -bramtypes)

map_ffram:
opt -fast -mux_undef -undriven -fine
memory_map -iattr -attr !ram_block -attr !rom_block -attr logic_block -attr syn_

→˓ramstyle=auto -attr syn_ramstyle=registers -attr syn_romstyle=auto -attr syn_
→˓romstyle=logic

(continues on next page)

G.218. synth_quicklogic - Synthesis for QuickLogic FPGAs 291

YosysHQ Yosys

(continued from previous page)

opt -undriven -fine

map_gates:
techmap
opt -fast
muxcover -mux8 -mux4 (for pp3)

map_ffs:
opt_expr
shregmap -minlen <min> -maxlen <max> (for qlf_k6n10f)
dfflegalize -cell <supported FF types>
techmap -map +/quicklogic/<family>/cells_map.v (for pp3)
techmap -map +/quicklogic/<family>/ffs_map.v (for ql_k6n10f)
opt

map_luts: (for pp3)
techmap -map +/quicklogic/<family>/latches_map.v
read_verilog -lib -specify -icells +/quicklogic/<family>/abc9_model.v
techmap -map +/quicklogic/<family>/abc9_map.v
abc9 -maxlut 4 -dff
techmap -map +/quicklogic/<family>/abc9_unmap.v
clean

map_luts: (for qlf_k6n10f)
abc9 -maxlut 6
clean
opt_lut

map_cells: (for pp3)
techmap -map +/quicklogic/<family>/lut_map.v
clean
opt_lut

check:
autoname
hierarchy -check
stat
check -noinit

iomap: (for pp3)
clkbufmap -inpad ckpad Q:P
iopadmap -bits -outpad outpad A:P -inpad inpad Q:P -tinoutpad bipad EN:Q:A:P␣

→˓A:top

finalize:
setundef -zero -params -undriven (for pp3)
opt_clean -purge
check
blackbox =A:whitebox

blif: (if -blif)
write_blif -attr -param -auto-top

(continues on next page)

292 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

verilog: (if -verilog)
write_verilog -noattr -nohex <file-name>

G.219 synth_sf2 - synthesis for SmartFusion2 and IGLOO2 FPGAs

synth_sf2 [options]

This command runs synthesis for SmartFusion2 and IGLOO2 FPGAs.

-top <module>
use the specified module as top module

-edif <file>
write the design to the specified EDIF file. writing of an output file
is omitted if this parameter is not specified.

-vlog <file>
write the design to the specified Verilog file. writing of an output
file is omitted if this parameter is not specified.

-json <file>
write the design to the specified JSON file. writing of an output file
is omitted if this parameter is not specified.

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-noflatten
do not flatten design before synthesis

-noiobs
run synthesis in "block mode", i.e. do not insert IO buffers

-clkbuf
insert direct PAD->global_net buffers

-discard-ffinit
discard FF init value instead of emitting an error

-retime
run 'abc' with '-dff -D 1' options

The following commands are executed by this synthesis command:

begin:
(continues on next page)

G.219. synth_sf2 - synthesis for SmartFusion2 and IGLOO2 FPGAs 293

YosysHQ Yosys

(continued from previous page)

read_verilog -lib +/sf2/cells_sim.v
hierarchy -check -top <top>

flatten: (unless -noflatten)
proc
flatten
tribuf -logic
deminout

coarse:
attrmap -remove init (only if -discard-ffinit)
synth -run coarse

fine:
opt -fast -mux_undef -undriven -fine
memory_map
opt -undriven -fine
techmap -map +/techmap.v -map +/sf2/arith_map.v
opt -fast
abc -dff -D 1 (only if -retime)

map_ffs:
dfflegalize -cell $_DFFE_PN?P_ x -cell $_SDFFCE_PN?P_ x -cell $_DLATCH_PN?_ x
techmap -D NO_LUT -map +/sf2/cells_map.v
opt_expr -mux_undef
simplemap

map_luts:
abc -lut 4
clean

map_cells:
techmap -map +/sf2/cells_map.v
clean

map_iobs:
clkbufmap -buf CLKINT Y:A [-inpad CLKBUF Y:PAD] (unless -noiobs, -inpad only␣

→˓passed if -clkbuf)
iopadmap -bits -inpad INBUF Y:PAD -outpad OUTBUF D:PAD -toutpad TRIBUFF E:D:PAD -

→˓tinoutpad BIBUF E:Y:D:PAD (unless -noiobs)
clean -purge

check:
hierarchy -check
stat
check -noinit
blackbox =A:whitebox

edif:
write_edif -gndvccy <file-name>

vlog:
(continues on next page)

294 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

write_verilog <file-name>

json:
write_json <file-name>

G.220 synth_xilinx - synthesis for Xilinx FPGAs

synth_xilinx [options]

This command runs synthesis for Xilinx FPGAs. This command does not operate on
partly selected designs. At the moment this command creates netlists that are
compatible with 7-Series Xilinx devices.

-top <module>
use the specified module as top module

-family <family>
run synthesis for the specified Xilinx architecture
generate the synthesis netlist for the specified family.
supported values:
- xcup: Ultrascale Plus
- xcu: Ultrascale
- xc7: Series 7 (default)
- xc6s: Spartan 6
- xc6v: Virtex 6
- xc5v: Virtex 5 (EXPERIMENTAL)
- xc4v: Virtex 4 (EXPERIMENTAL)
- xc3sda: Spartan 3A DSP (EXPERIMENTAL)
- xc3sa: Spartan 3A (EXPERIMENTAL)
- xc3se: Spartan 3E (EXPERIMENTAL)
- xc3s: Spartan 3 (EXPERIMENTAL)
- xc2vp: Virtex 2 Pro (EXPERIMENTAL)
- xc2v: Virtex 2 (EXPERIMENTAL)
- xcve: Virtex E, Spartan 2E (EXPERIMENTAL)
- xcv: Virtex, Spartan 2 (EXPERIMENTAL)

-edif <file>
write the design to the specified edif file. writing of an output file
is omitted if this parameter is not specified.

-blif <file>
write the design to the specified BLIF file. writing of an output file
is omitted if this parameter is not specified.

-ise
generate an output netlist suitable for ISE

-nobram
do not use block RAM cells in output netlist

(continues on next page)

G.220. synth_xilinx - synthesis for Xilinx FPGAs 295

YosysHQ Yosys

(continued from previous page)

-nolutram
do not use distributed RAM cells in output netlist

-nosrl
do not use distributed SRL cells in output netlist

-nocarry
do not use XORCY/MUXCY/CARRY4 cells in output netlist

-nowidelut
do not use MUXF[5-9] resources to implement LUTs larger than native for
the target

-nodsp
do not use DSP48*s to implement multipliers and associated logic

-noiopad
disable I/O buffer insertion (useful for hierarchical or
out-of-context flows)

-noclkbuf
disable automatic clock buffer insertion

-uram
infer URAM288s for large memories (xcup only)

-widemux <int>
enable inference of hard multiplexer resources (MUXF[78]) for muxes at
or above this number of inputs (minimum value 2, recommended value >= 5)
default: 0 (no inference)

-run <from_label>:<to_label>
only run the commands between the labels (see below). an empty
from label is synonymous to 'begin', and empty to label is
synonymous to the end of the command list.

-flatten
flatten design before synthesis

-dff
run 'abc'/'abc9' with -dff option

-retime
run 'abc' with '-D 1' option to enable flip-flop retiming.
implies -dff.

-abc9
use new ABC9 flow (EXPERIMENTAL)

The following commands are executed by this synthesis command:
(continues on next page)

296 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

begin:
read_verilog -lib -specify +/xilinx/cells_sim.v
read_verilog -lib +/xilinx/cells_xtra.v
hierarchy -check -auto-top

prepare:
proc
flatten (with '-flatten')
tribuf -logic
deminout
opt_expr
opt_clean
check
opt -nodffe -nosdff
fsm
opt
wreduce [-keepdc] (option for '-widemux')
peepopt
opt_clean
muxpack ('-widemux' only)
pmux2shiftx (skip if '-nosrl' and '-widemux=0')
clean (skip if '-nosrl' and '-widemux=0')

map_dsp: (skip if '-nodsp')
memory_dff
techmap -map +/mul2dsp.v -map +/xilinx/{family}_dsp_map.v {options}
select a:mul2dsp
setattr -unset mul2dsp
opt_expr -fine
wreduce
select -clear
xilinx_dsp -family <family>
chtype -set $mul t:$__soft_mul

coarse:
techmap -map +/cmp2lut.v -map +/cmp2lcu.v -D LUT_WIDTH=[46]
alumacc
share
opt
memory -nomap
opt_clean

map_memory:
memory_libmap [...]
techmap -map +/xilinx/lutrams_<family>_map.v
techmap -map +/xilinx/brams_<family>_map.v

map_ffram:
opt -fast -full
memory_map

(continues on next page)

G.220. synth_xilinx - synthesis for Xilinx FPGAs 297

YosysHQ Yosys

(continued from previous page)

fine:
simplemap t:$mux ('-widemux' only)
muxcover <internal options> ('-widemux' only)
opt -full
xilinx_srl -variable -minlen 3 (skip if '-nosrl')
techmap -map +/techmap.v -D LUT_SIZE=[46] [-map +/xilinx/mux_map.v] -map +/

→˓xilinx/arith_map.v
opt -fast

map_cells:
iopadmap -bits -outpad OBUF I:O -inpad IBUF O:I -toutpad OBUFT ~T:I:O -tinoutpad␣

→˓IOBUF ~T:O:I:IO A:top (skip if '-noiopad')
techmap -map +/techmap.v -map +/xilinx/cells_map.v
clean

map_ffs:
dfflegalize -cell $_DFFE_?P?P_ 01 -cell $_SDFFE_?P?P_ 01 -cell $_DLATCH_?P?_ 01 ␣

→˓ (for xc6v, xc7, xcu, xcup)
zinit -all w:* t:$_SDFFE_* ('-dff' only)
techmap -map +/xilinx/ff_map.v ('-abc9' only)

map_luts:
opt_expr -mux_undef -noclkinv
abc -luts 2:2,3,6:5[,10,20] [-dff] [-D 1] (option for '-nowidelut', '-dff', '-

→˓retime')
clean
techmap -map +/xilinx/ff_map.v (only if not '-abc9')
xilinx_srl -fixed -minlen 3 (skip if '-nosrl')
techmap -map +/xilinx/lut_map.v -map +/xilinx/cells_map.v -D LUT_WIDTH=[46]
xilinx_dffopt [-lut4]
opt_lut_ins -tech xilinx

finalize:
clkbufmap -buf BUFG O:I (skip if '-noclkbuf')
extractinv -inv INV O:I (only if '-ise')
clean

check:
hierarchy -check
stat -tech xilinx
check -noinit
blackbox =A:whitebox

edif:
write_edif -pvector bra

blif:
write_blif

298 Appendix G. Command line reference

YosysHQ Yosys

G.221 synthprop - synthesize SVA properties

synthprop [options]

This creates synthesizable properties for selected module.

-name <portname>

Name output port for assertions (default: assertions).

-map <filename>

Write port mapping for synthesizable properties.

-or_outputs

Or all outputs together to create a single output that goes high when any
property is violated, instead of generating individual output bits.

-reset <portname>

Name of top-level reset input. Latch a high state on the generated outputs
until an asynchronous top-level reset input is activated.

-resetn <portname>

Name of top-level reset input (inverse polarity). Latch a high state on the
generated outputs until an asynchronous top-level reset input is activated.

G.222 tcl - execute a TCL script file

tcl <filename> [args]

This command executes the tcl commands in the specified file.
Use 'yosys cmd' to run the yosys command 'cmd' from tcl.

The tcl command 'yosys -import' can be used to import all yosys
commands directly as tcl commands to the tcl shell. Yosys commands
'proc' and 'rename' are wrapped to tcl commands 'procs' and 'renames'
in order to avoid a name collision with the built in commands.

If any arguments are specified, these arguments are provided to the script via
the standard $argc and $argv variables.

Note, tcl will not recieve the output of any yosys command. If the output
(continues on next page)

G.221. synthprop - synthesize SVA properties 299

YosysHQ Yosys

(continued from previous page)

of the tcl commands are needed, use the yosys command 'tee -s result.string'
to redirect yosys's output to the 'result.string' scratchpad value.

G.223 techmap - generic technology mapper

techmap [-map filename] [selection]

This pass implements a very simple technology mapper that replaces cells in
the design with implementations given in form of a Verilog or RTLIL source
file.

-map filename
the library of cell implementations to be used.
without this parameter a builtin library is used that
transforms the internal RTL cells to the internal gate
library.

-map %<design-name>
like -map above, but with an in-memory design instead of a file.

-extern
load the cell implementations as separate modules into the design
instead of inlining them.

-max_iter <number>
only run the specified number of iterations on each module.
default: unlimited

-recursive
instead of the iterative breadth-first algorithm use a recursive
depth-first algorithm. both methods should yield equivalent results,
but may differ in performance.

-autoproc
Automatically call "proc" on implementations that contain processes.

-wb
Ignore the 'whitebox' attribute on cell implementations.

-assert
this option will cause techmap to exit with an error if it can't map
a selected cell. only cell types that end on an underscore are accepted
as final cell types by this mode.

-D <define>, -I <incdir>
this options are passed as-is to the Verilog frontend for loading the
map file. Note that the Verilog frontend is also called with the
'-nooverwrite' option set.

(continues on next page)

300 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

When a module in the map file has the 'techmap_celltype' attribute set, it will
match cells with a type that match the text value of this attribute. Otherwise
the module name will be used to match the cell. Multiple space-separated cell
types can be listed, and wildcards using [] will be expanded (ie.
"$_DFF_[PN]_" is the same as "$_DFF_P_ $_DFF_N_").

When a module in the map file has the 'techmap_simplemap' attribute set, techmap
will use 'simplemap' (see 'help simplemap') to map cells matching the module.

When a module in the map file has the 'techmap_maccmap' attribute set, techmap
will use 'maccmap' (see 'help maccmap') to map cells matching the module.

When a module in the map file has the 'techmap_wrap' attribute set, techmap
will create a wrapper for the cell and then run the command string that the
attribute is set to on the wrapper module.

When a port on a module in the map file has the 'techmap_autopurge' attribute
set, and that port is not connected in the instantiation that is mapped, then
then a cell port connected only to such wires will be omitted in the mapped
version of the circuit.

All wires in the modules from the map file matching the pattern _TECHMAP_*
or *._TECHMAP_* are special wires that are used to pass instructions from
the mapping module to the techmap command. At the moment the following special
wires are supported:

_TECHMAP_FAIL_
When this wire is set to a non-zero constant value, techmap will not
use this module and instead try the next module with a matching
'techmap_celltype' attribute.

When such a wire exists but does not have a constant value after all
_TECHMAP_DO_* commands have been executed, an error is generated.

_TECHMAP_DO_*
This wires are evaluated in alphabetical order. The constant text value
of this wire is a yosys command (or sequence of commands) that is run
by techmap on the module. A common use case is to run 'proc' on modules
that are written using always-statements.

When such a wire has a non-constant value at the time it is to be
evaluated, an error is produced. That means it is possible for such a
wire to start out as non-constant and evaluate to a constant value
during processing of other _TECHMAP_DO_* commands.

A _TECHMAP_DO_* command may start with the special token 'CONSTMAP; '.
in this case techmap will create a copy for each distinct configuration
of constant inputs and shorted inputs at this point and import the
constant and connected bits into the map module. All further commands
are executed in this copy. This is a very convenient way of creating
optimized specializations of techmap modules without using the special
parameters described below.

(continues on next page)

G.223. techmap - generic technology mapper 301

YosysHQ Yosys

(continued from previous page)

A _TECHMAP_DO_* command may start with the special token 'RECURSION; '.
then techmap will recursively replace the cells in the module with their
implementation. This is not affected by the -max_iter option.

It is possible to combine both prefixes to 'RECURSION; CONSTMAP; '.

_TECHMAP_REMOVEINIT_<port-name>_
When this wire is set to a constant value, the init attribute of the
wire(s) connected to this port will be consumed. This wire must have
the same width as the given port, and for every bit that is set to 1 in
the value, the corresponding init attribute bit will be changed to 1'bx.
If all bits of an init attribute are left as x, it will be removed.

In addition to this special wires, techmap also supports special parameters in
modules in the map file:

_TECHMAP_CELLTYPE_
When a parameter with this name exists, it will be set to the type name
of the cell that matches the module.

_TECHMAP_CELLNAME_
When a parameter with this name exists, it will be set to the name
of the cell that matches the module.

_TECHMAP_CONSTMSK_<port-name>_
_TECHMAP_CONSTVAL_<port-name>_

When this pair of parameters is available in a module for a port, then
former has a 1-bit for each constant input bit and the latter has the
value for this bit. The unused bits of the latter are set to undef (x).

_TECHMAP_WIREINIT_<port-name>_
When a parameter with this name exists, it will be set to the initial
value of the wire(s) connected to the given port, as specified by the
init attribute. If the attribute doesn't exist, x will be filled for the
missing bits. To remove the init attribute bits used, use the
_TECHMAP_REMOVEINIT_*_ wires.

_TECHMAP_BITS_CONNMAP_
_TECHMAP_CONNMAP_<port-name>_

For an N-bit port, the _TECHMAP_CONNMAP_<port-name>_ parameter, if it
exists, will be set to an N*_TECHMAP_BITS_CONNMAP_ bit vector containing
N words (of _TECHMAP_BITS_CONNMAP_ bits each) that assign each single
bit driver a unique id. The values 0-3 are reserved for 0, 1, x, and z.
This can be used to detect shorted inputs.

When a module in the map file has a parameter where the according cell in the
design has a port, the module from the map file is only used if the port in
the design is connected to a constant value. The parameter is then set to the
constant value.

A cell with the name _TECHMAP_REPLACE_ in the map file will inherit the name
(continues on next page)

302 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

and attributes of the cell that is being replaced.
A cell with a name of the form `_TECHMAP_REPLACE_.<suffix>` in the map file will
be named thus but with the `_TECHMAP_REPLACE_' prefix substituted with the name
of the cell being replaced.
Similarly, a wire named in the form `_TECHMAP_REPLACE_.<suffix>` will cause a
new wire alias to be created and named as above but with the `_TECHMAP_REPLACE_'
prefix also substituted.

See 'help extract' for a pass that does the opposite thing.

See 'help flatten' for a pass that does flatten the design (which is
essentially techmap but using the design itself as map library).

G.224 tee - redirect command output to file

tee [-q] [-o logfile|-a logfile] cmd

Execute the specified command, optionally writing the commands output to the
specified logfile(s).

-q
Do not print output to the normal destination (console and/or log file).

-o logfile
Write output to this file, truncate if exists.

-a logfile
Write output to this file, append if exists.

-s scratchpad
Write output to this scratchpad value, truncate if it exists.

+INT, -INT
Add/subtract INT from the -v setting for this command.

G.225 test_abcloop - automatically test handling of loops in abc com-
mand

test_abcloop [options]

Test handling of logic loops in ABC.

-n {integer}
create this number of circuits and test them (default = 100).

-s {positive_integer}
use this value as rng seed value (default = unix time).

G.224. tee - redirect command output to file 303

YosysHQ Yosys

G.226 test_autotb - generate simple test benches

test_autotb [options] [filename]

Automatically create primitive Verilog test benches for all modules in the
design. The generated testbenches toggle the input pins of the module in
a semi-random manner and dumps the resulting output signals.

This can be used to check the synthesis results for simple circuits by
comparing the testbench output for the input files and the synthesis results.

The backend automatically detects clock signals. Additionally a signal can
be forced to be interpreted as clock signal by setting the attribute
'gentb_clock' on the signal.

The attribute 'gentb_constant' can be used to force a signal to a constant
value after initialization. This can e.g. be used to force a reset signal
low in order to explore more inner states in a state machine.

The attribute 'gentb_skip' can be attached to modules to suppress testbench
generation.

-n <int>
number of iterations the test bench should run (default = 1000)

-seed <int>
seed used for pseudo-random number generation (default = 0).
a value of 0 will cause an arbitrary seed to be chosen, based on
the current system time.

G.227 test_cell - automatically test the implementation of a cell type

test_cell [options] {cell-types}

Tests the internal implementation of the given cell type (for example '$add')
by comparing SAT solver, EVAL and TECHMAP implementations of the cell types..

Run with 'all' instead of a cell type to run the test on all supported
cell types. Use for example 'all /$add' for all cell types except $add.

-n {integer}
create this number of cell instances and test them (default = 100).

-s {positive_integer}
use this value as rng seed value (default = unix time).

-f {rtlil_file}
don't generate circuits. instead load the specified RTLIL file.

-w {filename_prefix}
(continues on next page)

304 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

don't test anything. just generate the circuits and write them
to RTLIL files with the specified prefix

-map {filename}
pass this option to techmap.

-simlib
use "techmap -D SIMLIB_NOCHECKS -map +/simlib.v -max_iter 2 -autoproc"

-aigmap
instead of calling "techmap", call "aigmap"

-muxdiv
when creating test benches with dividers, create an additional mux
to mask out the division-by-zero case

-script {script_file}
instead of calling "techmap", call "script {script_file}".

-const
set some input bits to random constant values

-nosat
do not check SAT model or run SAT equivalence checking

-noeval
do not check const-eval models

-edges
test cell edges db creator against sat-based implementation

-v
print additional debug information to the console

-vlog {filename}
create a Verilog test bench to test simlib and write_verilog

G.228 test_pmgen - test pass for pmgen

test_pmgen -reduce_chain [options] [selection]

Demo for recursive pmgen patterns. Map chains of AND/OR/XOR to $reduce_*.

test_pmgen -reduce_tree [options] [selection]

Demo for recursive pmgen patterns. Map trees of AND/OR/XOR to $reduce_*.

(continues on next page)

G.228. test_pmgen - test pass for pmgen 305

YosysHQ Yosys

(continued from previous page)

test_pmgen -eqpmux [options] [selection]

Demo for recursive pmgen patterns. Optimize EQ/NE/PMUX circuits.

test_pmgen -generate [options] <pattern_name>

Create modules that match the specified pattern.

G.229 torder - print cells in topological order

torder [options] [selection]

This command prints the selected cells in topological order.

-stop <cell_type> <cell_port>
do not use the specified cell port in topological sorting

-noautostop
by default Q outputs of internal FF cells and memory read port outputs
are not used in topological sorting. this option deactivates that.

G.230 trace - redirect command output to file

trace cmd

Execute the specified command, logging all changes the command performs on
the design in real time.

G.231 tribuf - infer tri-state buffers

tribuf [options] [selection]

This pass transforms $mux cells with 'z' inputs to tristate buffers.

-merge
merge multiple tri-state buffers driving the same net
into a single buffer.

-logic
convert tri-state buffers that do not drive output ports
to non-tristate logic. this option implies -merge.

-formal
convert all tri-state buffers to non-tristate logic and

(continues on next page)

306 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

add a formal assertion that no two buffers are driving the
same net simultaneously. this option implies -merge.

G.232 uniquify - create unique copies of modules

uniquify [selection]

By default, a module that is instantiated by several other modules is only
kept once in the design. This preserves the original modularity of the design
and reduces the overall size of the design in memory. But it prevents certain
optimizations and other operations on the design. This pass creates unique
modules for all selected cells. The created modules are marked with the
'unique' attribute.

This commands only operates on modules that by themself have the 'unique'
attribute set (the 'top' module is unique implicitly).

G.233 verific - load Verilog and VHDL designs using Verific

verific {-vlog95|-vlog2k|-sv2005|-sv2009|-sv2012|-sv} <verilog-file>..

Load the specified Verilog/SystemVerilog files into Verific.

All files specified in one call to this command are one compilation unit.
Files passed to different calls to this command are treated as belonging to
different compilation units.

Additional -D<macro>[=<value>] options may be added after the option indicating
the language version (and before file names) to set additional verilog defines.
The macros YOSYS, SYNTHESIS, and VERIFIC are defined implicitly.

verific -formal <verilog-file>..

Like -sv, but define FORMAL instead of SYNTHESIS.

verific {-vhdl87|-vhdl93|-vhdl2k|-vhdl2008|-vhdl} <vhdl-file>..

Load the specified VHDL files into Verific.

verific {-edif} <edif-file>..

Load the specified EDIF files into Verific.

(continues on next page)

G.232. uniquify - create unique copies of modules 307

YosysHQ Yosys

(continued from previous page)

verific {-liberty} <liberty-file>..

Load the specified Liberty files into Verific.
Default library when -work is not present is one specified in liberty file.
To use from SystemVerilog or VHDL use -L to specify liberty library.

-lib
only create empty blackbox modules

verific {-f|-F} [-vlog95|-vlog2k|-sv2005|-sv2009|
-sv2012|-sv|-formal] <command-file>

Load and execute the specified command file.
Override verilog parsing mode can be set.
The macros YOSYS, SYNTHESIS/FORMAL, and VERIFIC are defined implicitly.

Command file parser supports following commands in file:
+define+<MACRO>=<VALUE> - defines macro
-u - upper case all identifier (makes Verilog parser

case insensitive)
-v <filepath> - register library name (file)
-y <filepath> - register library name (directory)
+incdir+<filepath> - specify include dir
+libext+<filepath> - specify library extension
+liborder+<id> - add library in ordered list
+librescan - unresolved modules will be always searched

starting with the first library specified
by -y/-v options.

-f/-file <filepath> - nested -f option
-F <filepath> - nested -F option (relative path)
parse files:

<filepath>
+systemverilogext+<filepath>
+verilog1995ext+<filepath>
+verilog2001ext+<filepath>

analysis mode:
-ams
+v2k
-sverilog

verific [-work <libname>] {-sv|-vhdl|...} <hdl-file>

Load the specified Verilog/SystemVerilog/VHDL file into the specified library.
(default library when -work is not present: "work")

verific [-L <libname>] {-sv|-vhdl|...} <hdl-file>

Look up external definitions in the specified library.
(-L may be used more than once)

(continues on next page)

308 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

verific -vlog-incdir <directory>..

Add Verilog include directories.

verific -vlog-libdir <directory>..

Add Verilog library directories. Verific will search in this directories to
find undefined modules.

verific -vlog-libext <extension>..

Add Verilog library extensions, used when searching in library directories.

verific -vlog-define <macro>[=<value>]..

Add Verilog defines.

verific -vlog-undef <macro>..

Remove Verilog defines previously set with -vlog-define.

verific -set-error <msg_id>..
verific -set-warning <msg_id>..
verific -set-info <msg_id>..
verific -set-ignore <msg_id>..

Set message severity. <msg_id> is the string in square brackets when a message
is printed, such as VERI-1209.
Also errors, warnings, infos and comments could be used to set new severity for
all messages of certain type.

verific -import [options] <top>..

Elaborate the design for the specified top modules or configurations, import to
Yosys and reset the internal state of Verific.

Import options:

-all
Elaborate all modules, not just the hierarchy below the given top
modules. With this option the list of modules to import is optional.

-gates
Create a gate-level netlist.

(continues on next page)

G.233. verific - load Verilog and VHDL designs using Verific 309

YosysHQ Yosys

(continued from previous page)

-flatten
Flatten the design in Verific before importing.

-extnets
Resolve references to external nets by adding module ports as needed.

-autocover
Generate automatic cover statements for all asserts

-fullinit
Keep all register initializations, even those for non-FF registers.

-cells
Import all cell definitions from Verific loaded libraries even if they are
unused in design. Useful with "-edif" and "-liberty" option.

-chparam name value
Elaborate the specified top modules (all modules when -all given) using
this parameter value. Modules on which this parameter does not exist will
cause Verific to produce a VERI-1928 or VHDL-1676 message. This option
can be specified multiple times to override multiple parameters.
String values must be passed in double quotes (").

-v, -vv
Verbose log messages. (-vv is even more verbose than -v.)

-pp <filename>
Pretty print design after elaboration to specified file.

The following additional import options are useful for debugging the Verific
bindings (for Yosys and/or Verific developers):

-k
Keep going after an unsupported verific primitive is found. The
unsupported primitive is added as blockbox module to the design.
This will also add all SVA related cells to the design parallel to
the checker logic inferred by it.

-V
Import Verific netlist as-is without translating to Yosys cell types.

-nosva
Ignore SVA properties, do not infer checker logic.

-L <int>
Maximum number of ctrl bits for SVA checker FSMs (default=16).

-n
Keep all Verific names on instances and nets. By default only
user-declared names are preserved.

(continues on next page)

310 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-d <dump_file>
Dump the Verific netlist as a verilog file.

verific [-work <libname>] -pp [options] <filename> [<module>]..

Pretty print design (or just module) to the specified file from the
specified library. (default library when -work is not present: "work")

Pretty print options:

-verilog
Save output for Verilog/SystemVerilog design modules (default).

-vhdl
Save output for VHDL design units.

verific -cfg [<name> [<value>]]

Get/set Verific runtime flags.

verific [-work <libname>] -rewrite [-clear][-list] <name> [options]..

Register rewriter for execution on elaboration step.

-help
Displays help for specific rewriter.

-clear
Remove all rewriters from list, including default rewriters.

-list
Displays all rewriter in list in order of execution.

-module <module>
Run rewriter only on specified module.

-work <libname>
Use verilog sources from given library.
(default library when -work is not present: "work")

-blacklist <filename[:lineno]>
Do not run rewriter on modules from files that match the filename
or filename and line number if provided in such format.
Parameter can also contain comma separated list of file locations.

-blfile <file>
Do not run rewriter on locations specified in file, they can
represent filename or filename and location in file.

(continues on next page)

G.233. verific - load Verilog and VHDL designs using Verific 311

YosysHQ Yosys

(continued from previous page)

-whitelist <filename[:lineno]>
Run rewriter on modules from files that match the filename
or filename and line number if provided in such format.
Parameter can also contain comma separated list of file locations.

-wlfile <file>
Run rewriter on locations specified in file, they can
represent filename or filename and location in file.

Available rewriters:
gen-witness-covers - Generate witness covers
initial-assertions - Generate initial block assertions (automatically added)

verific [-work <libname>] -elaborate [options]..

Execute elaboration step and all registered rewriters.

-work <libname>
Use verilog sources from given library.
(default library when -work is not present: "work")

verific [-work <libname>] -ivy-json-export <filename> [options]..

Export IVY specific data to json file.

-work <libname>
Use verilog sources from given library.
(default library when -work is not present: "work")

-top <top>
Specify top module.

verific -assert-all-invariants

Executes code rewriter to assert all invariants.

verific -assert-used-properties-and-sequences

Executes code rewriter to assert all properties and sequences used in proofs.

verific -delete-all-invariants

Executes code rewriter to delete all invariants.

verific -delete-all-proofs

Executes code rewriter to delete all proofs.

(continues on next page)

312 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

Use YosysHQ Tabby CAD Suite if you need Yosys+Verific.
https://www.yosyshq.com/

Contact office@yosyshq.com for free evaluation
binaries of YosysHQ Tabby CAD Suite.

G.234 verilog_defaults - set default options for read_verilog

verilog_defaults -add [options]

Add the specified options to the list of default options to read_verilog.

verilog_defaults -clear

Clear the list of Verilog default options.

verilog_defaults -push
verilog_defaults -pop

Push or pop the list of default options to a stack. Note that -push does
not imply -clear.

G.235 verilog_defines - define and undefine verilog defines

verilog_defines [options]

Define and undefine verilog preprocessor macros.

-Dname[=definition]
define the preprocessor symbol 'name' and set its optional value
'definition'

-Uname[=definition]
undefine the preprocessor symbol 'name'

-reset
clear list of defined preprocessor symbols

-list
list currently defined preprocessor symbols

G.234. verilog_defaults - set default options for read_verilog 313

YosysHQ Yosys

G.236 viz - visualize data flow graph

viz [options] [selection]

Create a graphviz DOT file for the selected part of the design, showing the
relationships between the selected wires, and compile it to a graphics
file (usually SVG or PostScript).

-viewer <viewer>
Run the specified command with the graphics file as parameter.
On Windows, this pauses yosys until the viewer exits.

-format <format>
Generate a graphics file in the specified format. Use 'dot' to just
generate a .dot file, or other <format> strings such as 'svg' or 'ps'
to generate files in other formats (this calls the 'dot' command).

-prefix <prefix>
generate <prefix>.* instead of ~/.yosys_viz.*

-pause
wait for the user to press enter to before returning

-nobg
don't run viewer in the background, IE wait for the viewer tool to
exit before returning

-set-vg-attr
set their group index as 'vg' attribute on cells and wires

-g <selection>
manually define a group of terminal signals. this group is not being
merged with other terminal groups.

-u <selection>
manually define a unique group for each wire in the selection.

-x <selection>
manually exclude wires from being considered. (usually this is
used for global signals, such as reset.)

-s <selection>
like -g, but mark group as 'special', changing the algorithm to
preserve as much info about this groups connectivity as possible.

-G <selection_expr> .
-U <selection_expr> .
-X <selection_expr> .
-S <selection_expr> .

like -u, -g, -x, and -s, but parse all arguments up to a terminating .
as a single select expression. (see 'help select' for details)

(continues on next page)

314 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-0, -1, -2, -3, -4, -5, -6, -7, -8, -9
select effort level. each level corresponds to an incresingly more
aggressive sequence of strategies for merging nodes of the data flow
graph. (default: 9)

When no <format> is specified, 'dot' is used. When no <format> and <viewer> is
specified, 'xdot' is used to display the schematic (POSIX systems only).

The generated output files are '~/.yosys_viz.dot' and '~/.yosys_viz.<format>',
unless another prefix is specified using -prefix <prefix>.

Yosys on Windows and YosysJS use different defaults: The output is written
to 'show.dot' in the current directory and new viewer is launched each time
the 'show' command is executed.

G.237 wbflip - flip the whitebox attribute

wbflip [selection]

Flip the whitebox attribute on selected cells. I.e. if it's set, unset it, and
vice-versa. Blackbox cells are not effected by this command.

G.238 wreduce - reduce the word size of operations if possible

wreduce [options] [selection]

This command reduces the word size of operations. For example it will replace
the 32 bit adders in the following code with adders of more appropriate widths:

module test(input [3:0] a, b, c, output [7:0] y);
assign y = a + b + c + 1;

endmodule

Options:

-memx
Do not change the width of memory address ports. Use this options in
flows that use the 'memory_memx' pass.

-mux_undef
remove 'undef' inputs from $mux, $pmux and $_MUX_ cells

-keepdc
Do not optimize explicit don't-care values.

G.237. wbflip - flip the whitebox attribute 315

YosysHQ Yosys

G.239 write_aiger - write design to AIGER file

write_aiger [options] [filename]

Write the current design to an AIGER file. The design must be flattened and
must not contain any cell types except $_AND_, $_NOT_, simple FF types,
$assert and $assume cells, and $initstate cells.

$assert and $assume cells are converted to AIGER bad state properties and
invariant constraints.

-ascii
write ASCII version of AIGER format

-zinit
convert FFs to zero-initialized FFs, adding additional inputs for
uninitialized FFs.

-miter
design outputs are AIGER bad state properties

-symbols
include a symbol table in the generated AIGER file

-map <filename>
write an extra file with port and latch symbols

-vmap <filename>
like -map, but more verbose

-no-startoffset
make indexes zero based, enable using map files with smt solvers.

-ywmap <filename>
write a map file for conversion to and from yosys witness traces.

-I, -O, -B, -L
If the design contains no input/output/assert/flip-flop then create one
dummy input/output/bad_state-pin or latch to make the tools reading the
AIGER file happy.

G.240 write_blif - write design to BLIF file

write_blif [options] [filename]

Write the current design to an BLIF file.

-top top_module
set the specified module as design top module

(continues on next page)

316 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-buf <cell-type> <in-port> <out-port>
use cells of type <cell-type> with the specified port names for buffers

-unbuf <cell-type> <in-port> <out-port>
replace buffer cells with the specified name and port names with
a .names statement that models a buffer

-true <cell-type> <out-port>
-false <cell-type> <out-port>
-undef <cell-type> <out-port>

use the specified cell types to drive nets that are constant 1, 0, or
undefined. when '-' is used as <cell-type>, then <out-port> specifies
the wire name to be used for the constant signal and no cell driving
that wire is generated. when '+' is used as <cell-type>, then <out-port>
specifies the wire name to be used for the constant signal and a .names
statement is generated to drive the wire.

-noalias
if a net name is aliasing another net name, then by default a net
without fanout is created that is driven by the other net. This option
suppresses the generation of this nets without fanout.

The following options can be useful when the generated file is not going to be
read by a BLIF parser but a custom tool. It is recommended not to name the
output file *.blif when any of these options are used.

-icells
do not translate Yosys's internal gates to generic BLIF logic
functions. Instead create .subckt or .gate lines for all cells.

-gates
print .gate instead of .subckt lines for all cells that are not
instantiations of other modules from this design.

-conn
do not generate buffers for connected wires. instead use the
non-standard .conn statement.

-attr
use the non-standard .attr statement to write cell attributes

-param
use the non-standard .param statement to write cell parameters

-cname
use the non-standard .cname statement to write cell names

-iname, -iattr
enable -cname and -attr functionality for .names statements
(the .cname and .attr statements will be included in the BLIF
output after the truth table for the .names statement)

(continues on next page)

G.240. write_blif - write design to BLIF file 317

YosysHQ Yosys

(continued from previous page)

-blackbox
write blackbox cells with .blackbox statement.

-impltf
do not write definitions for the $true, $false and $undef wires.

G.241 write_btor - write design to BTOR file

write_btor [options] [filename]

Write a BTOR description of the current design.

-v
Add comments and indentation to BTOR output file

-s
Output only a single bad property for all asserts

-c
Output cover properties using 'bad' statements instead of asserts

-i <filename>
Create additional info file with auxiliary information

-x
Output symbols for internal netnames (starting with '$')

-ywmap <filename>
Create a map file for conversion to and from Yosys witness traces

G.242 write_cxxrtl - convert design to C++ RTL simulation

write_cxxrtl [options] [filename]

Write C++ code that simulates the design. The generated code requires a driver
that instantiates the design, toggles its clock, and interacts with its ports.

The following driver may be used as an example for a design with a single clock
driving rising edge triggered flip-flops:

#include "top.cc"

int main() {
cxxrtl_design::p_top top;
top.step();
while (1) {
/* user logic */

(continues on next page)

318 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

top.p_clk.set(false);
top.step();
top.p_clk.set(true);
top.step();

}
}

Note that CXXRTL simulations, just like the hardware they are simulating, are
subject to race conditions. If, in the example above, the user logic would run
simultaneously with the rising edge of the clock, the design would malfunction.

This backend supports replacing parts of the design with black boxes implemented
in C++. If a module marked as a CXXRTL black box, its implementation is ignored,
and the generated code consists only of an interface and a factory function.
The driver must implement the factory function that creates an implementation of
the black box, taking into account the parameters it is instantiated with.

For example, the following Verilog code defines a CXXRTL black box interface for
a synchronous debug sink:

(* cxxrtl_blackbox *)
module debug(...);
(* cxxrtl_edge = "p" *) input clk;
input en;
input [7:0] i_data;
(* cxxrtl_sync *) output [7:0] o_data;

endmodule

For this HDL interface, this backend will generate the following C++ interface:

struct bb_p_debug : public module {
value<1> p_clk;
bool posedge_p_clk() const { /* ... */ }
value<1> p_en;
value<8> p_i_data;
wire<8> p_o_data;

bool eval() override;
template<class ObserverT>
bool commit(ObserverT &observer);
bool commit() override;

static std::unique_ptr<bb_p_debug>
create(std::string name, metadata_map parameters, metadata_map attributes);

};

The `create' function must be implemented by the driver. For example, it could
always provide an implementation logging the values to standard error stream:

namespace cxxrtl_design {

struct stderr_debug : public bb_p_debug {
(continues on next page)

G.242. write_cxxrtl - convert design to C++ RTL simulation 319

YosysHQ Yosys

(continued from previous page)

bool eval() override {
if (posedge_p_clk() && p_en)
fprintf(stderr, "debug: %02x\n", p_i_data.data[0]);

p_o_data.next = p_i_data;
return bb_p_debug::eval();

}
};

std::unique_ptr<bb_p_debug>
bb_p_debug::create(std::string name, cxxrtl::metadata_map parameters,

cxxrtl::metadata_map attributes) {
return std::make_unique<stderr_debug>();

}

}

For complex applications of black boxes, it is possible to parameterize their
port widths. For example, the following Verilog code defines a CXXRTL black box
interface for a configurable width debug sink:

(* cxxrtl_blackbox, cxxrtl_template = "WIDTH" *)
module debug(...);
parameter WIDTH = 8;
(* cxxrtl_edge = "p" *) input clk;
input en;
(* cxxrtl_width = "WIDTH" *) input [WIDTH - 1:0] i_data;
(* cxxrtl_width = "WIDTH" *) output [WIDTH - 1:0] o_data;

endmodule

For this parametric HDL interface, this backend will generate the following C++
interface (only the differences are shown):

template<size_t WIDTH>
struct bb_p_debug : public module {
// ...
value<WIDTH> p_i_data;
wire<WIDTH> p_o_data;
// ...
static std::unique_ptr<bb_p_debug<WIDTH>>
create(std::string name, metadata_map parameters, metadata_map attributes);

};

The `create' function must be implemented by the driver, specialized for every
possible combination of template parameters. (Specialization is necessary to
enable separate compilation of generated code and black box implementations.)

template<size_t SIZE>
struct stderr_debug : public bb_p_debug<SIZE> {
// ...

};

template<>
(continues on next page)

320 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

std::unique_ptr<bb_p_debug<8>>
bb_p_debug<8>::create(std::string name, cxxrtl::metadata_map parameters,

cxxrtl::metadata_map attributes) {
return std::make_unique<stderr_debug<8>>();

}

The following attributes are recognized by this backend:

cxxrtl_blackbox
only valid on modules. if specified, the module contents are ignored,
and the generated code includes only the module interface and a factory
function, which will be called to instantiate the module.

cxxrtl_edge
only valid on inputs of black boxes. must be one of "p", "n", "a".
if specified on signal `clk`, the generated code includes edge detectors
`posedge_p_clk()` (if "p"), `negedge_p_clk()` (if "n"), or both (if
"a"), simplifying implementation of clocked black boxes.

cxxrtl_template
only valid on black boxes. must contain a space separated sequence of
identifiers that have a corresponding black box parameters. for each
of them, the generated code includes a `size_t` template parameter.

cxxrtl_width
only valid on ports of black boxes. must be a constant expression, which
is directly inserted into generated code.

cxxrtl_comb, cxxrtl_sync
only valid on outputs of black boxes. if specified, indicates that every
bit of the output port is driven, correspondingly, by combinatorial or
synchronous logic. this knowledge is used for scheduling optimizations.
if neither is specified, the output will be pessimistically treated as
driven by both combinatorial and synchronous logic.

The following options are supported by this backend:

-print-wire-types, -print-debug-wire-types
enable additional debug logging, for pass developers.

-header
generate separate interface (.h) and implementation (.cc) files.
if specified, the backend must be called with a filename, and filename
of the interface is derived from filename of the implementation.
otherwise, interface and implementation are generated together.

-namespace <ns-name>
place the generated code into namespace <ns-name>. if not specified,
"cxxrtl_design" is used.

-print-output <stream>
$print cells in the generated code direct their output to <stream>.

(continues on next page)

G.242. write_cxxrtl - convert design to C++ RTL simulation 321

YosysHQ Yosys

(continued from previous page)

must be one of "std::cout", "std::cerr". if not specified,
"std::cout" is used.

-nohierarchy
use design hierarchy as-is. in most designs, a top module should be
present as it is exposed through the C API and has unbuffered outputs
for improved performance; it will be determined automatically if absent.

-noflatten
don't flatten the design. fully flattened designs can evaluate within
one delta cycle if they have no combinatorial feedback.
note that the debug interface and waveform dumps use full hierarchical
names for all wires even in flattened designs.

-noproc
don't convert processes to netlists. in most designs, converting
processes significantly improves evaluation performance at the cost of
slight increase in compilation time.

-O <level>
set the optimization level. the default is -O6. higher optimization
levels dramatically decrease compile and run time, and highest level
possible for a design should be used.

-O0
no optimization.

-O1
unbuffer internal wires if possible.

-O2
like -O1, and localize internal wires if possible.

-O3
like -O2, and inline internal wires if possible.

-O4
like -O3, and unbuffer public wires not marked (*keep*) if possible.

-O5
like -O4, and localize public wires not marked (*keep*) if possible.

-O6
like -O5, and inline public wires not marked (*keep*) if possible.

-g <level>
set the debug level. the default is -g4. higher debug levels provide
more visibility and generate more code, but do not pessimize evaluation.

-g0
no debug information. the C API is disabled.

(continues on next page)

322 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-g1
include bare minimum of debug information necessary to access all design
state. the C API is enabled.

-g2
like -g1, but include debug information for all public wires that are
directly accessible through the C++ interface.

-g3
like -g2, and include debug information for public wires that are tied
to a constant or another public wire.

-g4
like -g3, and compute debug information on demand for all public wires
that were optimized out.

G.243 write_edif - write design to EDIF netlist file

write_edif [options] [filename]

Write the current design to an EDIF netlist file.

-top top_module
set the specified module as design top module

-nogndvcc
do not create "GND" and "VCC" cells. (this will produce an error
if the design contains constant nets. use "hilomap" to map to custom
constant drivers first)

-gndvccy
create "GND" and "VCC" cells with "Y" outputs. (the default is
"G" for "GND" and "P" for "VCC".)

-attrprop
create EDIF properties for cell attributes

-keep
create extra KEEP nets by allowing a cell to drive multiple nets.

-pvector {par|bra|ang}
sets the delimiting character for module port rename clauses to
parentheses, square brackets, or angle brackets.

-lsbidx
use index 0 for the LSB bit of a net or port instead of MSB.

Unfortunately there are different "flavors" of the EDIF file format. This
command generates EDIF files for the Xilinx place&route tools. It might be

(continues on next page)

G.243. write_edif - write design to EDIF netlist file 323

YosysHQ Yosys

(continued from previous page)

necessary to make small modifications to this command when a different tool
is targeted.

G.244 write_file - write a text to a file

write_file [options] output_file [input_file]

Write the text from the input file to the output file.

-a
Append to output file (instead of overwriting)

Inside a script the input file can also can a here-document:

write_file hello.txt <<EOT
Hello World!
EOT

G.245 write_firrtl - write design to a FIRRTL file

write_firrtl [options] [filename]

Write a FIRRTL netlist of the current design.
The following commands are executed by this command:

pmuxtree
bmuxmap
demuxmap
bwmuxmap

G.246 write_ilang - (deprecated) alias of write_rtlil

See `help write_rtlil`.

G.247 write_intersynth - write design to InterSynth netlist file

write_intersynth [options] [filename]

Write the current design to an 'intersynth' netlist file. InterSynth is
a tool for Coarse-Grain Example-Driven Interconnect Synthesis.

-notypes
(continues on next page)

324 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

do not generate celltypes and conntypes commands. i.e. just output
the netlists. this is used for postsilicon synthesis.

-lib <verilog_or_rtlil_file>
Use the specified library file for determining whether cell ports are
inputs or outputs. This option can be used multiple times to specify
more than one library.

-selected
only write selected modules. modules must be selected entirely or
not at all.

http://bygone.clairexen.net/intersynth/

G.248 write_jny - generate design metadata

jny [options] [selection]

Write JSON netlist metadata for the current design

-no-connections
Don't include connection information in the netlist output.

-no-attributes
Don't include attributed information in the netlist output.

-no-properties
Don't include property information in the netlist output.

The JSON schema for JNY output files is located in the "jny.schema.json" file
which is located at "https://raw.githubusercontent.com/YosysHQ/yosys/master/misc/jny.

→˓schema.json"

G.249 write_json - write design to a JSON file

write_json [options] [filename]

Write a JSON netlist of the current design.

-aig
include AIG models for the different gate types

-compat-int
emit 32-bit or smaller fully-defined parameter values directly
as JSON numbers (for compatibility with old parsers)

(continues on next page)

G.248. write_jny - generate design metadata 325

YosysHQ Yosys

(continued from previous page)

The general syntax of the JSON output created by this command is as follows:

{
"creator": "Yosys <version info>",
"modules": {
<module_name>: {
"attributes": {
<attribute_name>: <attribute_value>,
...

},
"parameter_default_values": {
<parameter_name>: <parameter_value>,
...

},
"ports": {
<port_name>: <port_details>,
...

},
"cells": {
<cell_name>: <cell_details>,
...

},
"memories": {
<memory_name>: <memory_details>,
...

},
"netnames": {
<net_name>: <net_details>,
...

}
}

},
"models": {
...

},
}

Where <port_details> is:

{
"direction": <"input" | "output" | "inout">,
"bits": <bit_vector>
"offset": <the lowest bit index in use, if non-0>
"upto": <1 if the port bit indexing is MSB-first>
"signed": <1 if the port is signed>

}

The "offset" and "upto" fields are skipped if their value would be 0.
They don't affect connection semantics, and are only used to preserve original
HDL bit indexing.And <cell_details> is:

{
(continues on next page)

326 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

"hide_name": <1 | 0>,
"type": <cell_type>,
"model": <AIG model name, if -aig option used>,
"parameters": {
<parameter_name>: <parameter_value>,
...

},
"attributes": {
<attribute_name>: <attribute_value>,
...

},
"port_directions": {
<port_name>: <"input" | "output" | "inout">,
...

},
"connections": {
<port_name>: <bit_vector>,
...

},
}

And <memory_details> is:

{
"hide_name": <1 | 0>,
"attributes": {
<attribute_name>: <attribute_value>,
...

},
"width": <memory width>
"start_offset": <the lowest valid memory address>
"size": <memory size>

}

And <net_details> is:

{
"hide_name": <1 | 0>,
"bits": <bit_vector>
"offset": <the lowest bit index in use, if non-0>
"upto": <1 if the port bit indexing is MSB-first>
"signed": <1 if the port is signed>

}

The "hide_name" fields are set to 1 when the name of this cell or net is
automatically created and is likely not of interest for a regular user.

The "port_directions" section is only included for cells for which the
interface is known.

Module and cell ports and nets can be single bit wide or vectors of multiple
bits. Each individual signal bit is assigned a unique integer. The <bit_vector>

(continues on next page)

G.249. write_json - write design to a JSON file 327

YosysHQ Yosys

(continued from previous page)

values referenced above are vectors of this integers. Signal bits that are
connected to a constant driver are denoted as string "0", "1", "x", or
"z" instead of a number.

Bit vectors (including integers) are written as string holding the binary
representation of the value. Strings are written as strings, with an appended
blank in cases of strings of the form /[01xz]* */.

For example the following Verilog code:

module test(input x, y);
(* keep *) foo #(.P(42), .Q(1337))

foo_inst (.A({x, y}), .B({y, x}), .C({4'd10, {4{x}}}));
endmodule

Translates to the following JSON output:

{
"creator": "Yosys 0.9+2406 (git sha1 fb1168d8, clang 9.0.1 -fPIC -Os)",
"modules": {
"test": {
"attributes": {
"cells_not_processed": "00000000000000000000000000000001",
"src": "test.v:1.1-4.10"

},
"ports": {
"x": {
"direction": "input",
"bits": [2]

},
"y": {
"direction": "input",
"bits": [3]

}
},
"cells": {
"foo_inst": {
"hide_name": 0,
"type": "foo",
"parameters": {
"P": "00000000000000000000000000101010",
"Q": "00000000000000000000010100111001"

},
"attributes": {
"keep": "00000000000000000000000000000001",
"module_not_derived": "00000000000000000000000000000001",
"src": "test.v:3.1-3.55"

},
"connections": {
"A": [3, 2],
"B": [2, 3],
"C": [2, 2, 2, 2, "0", "1", "0", "1"]

(continues on next page)

328 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

}
}

},
"netnames": {
"x": {
"hide_name": 0,
"bits": [2],
"attributes": {
"src": "test.v:1.19-1.20"

}
},
"y": {
"hide_name": 0,
"bits": [3],
"attributes": {
"src": "test.v:1.22-1.23"

}
}

}
}

}
}

The models are given as And-Inverter-Graphs (AIGs) in the following form:

"models": {
<model_name>: [
/* 0 */ [<node-spec>],
/* 1 */ [<node-spec>],
/* 2 */ [<node-spec>],
...

],
...

},

The following node-types may be used:

["port", <portname>, <bitindex>, <out-list>]
- the value of the specified input port bit

["nport", <portname>, <bitindex>, <out-list>]
- the inverted value of the specified input port bit

["and", <node-index>, <node-index>, <out-list>]
- the ANDed value of the specified nodes

["nand", <node-index>, <node-index>, <out-list>]
- the inverted ANDed value of the specified nodes

["true", <out-list>]
- the constant value 1

(continues on next page)

G.249. write_json - write design to a JSON file 329

YosysHQ Yosys

(continued from previous page)

["false", <out-list>]
- the constant value 0

All nodes appear in topological order. I.e. only nodes with smaller indices
are referenced by "and" and "nand" nodes.

The optional <out-list> at the end of a node specification is a list of
output portname and bitindex pairs, specifying the outputs driven by this node.

For example, the following is the model for a 3-input 3-output $reduce_and cell
inferred by the following code:

module test(input [2:0] in, output [2:0] out);
assign in = &out;

endmodule

"$reduce_and:3U:3": [
/* 0 */ ["port", "A", 0],
/* 1 */ ["port", "A", 1],
/* 2 */ ["and", 0, 1],
/* 3 */ ["port", "A", 2],
/* 4 */ ["and", 2, 3, "Y", 0],
/* 5 */ ["false", "Y", 1, "Y", 2]

]

Future version of Yosys might add support for additional fields in the JSON
format. A program processing this format must ignore all unknown fields.

G.250 write_rtlil - write design to RTLIL file

write_rtlil [filename]

Write the current design to an RTLIL file. (RTLIL is a text representation
of a design in yosys's internal format.)

-selected
only write selected parts of the design.

G.251 write_simplec - convert design to simple C code

write_simplec [options] [filename]

Write simple C code for simulating the design. The C code written can be used to
simulate the design in a C environment, but the purpose of this command is to
generate code that works well with C-based formal verification.

-verbose
(continues on next page)

330 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

this will print the recursive walk used to export the modules.

-i8, -i16, -i32, -i64
set the maximum integer bit width to use in the generated code.

THIS COMMAND IS UNDER CONSTRUCTION

G.252 write_smt2 - write design to SMT-LIBv2 file

write_smt2 [options] [filename]

Write a SMT-LIBv2 [1] description of the current design. For a module with name
'<mod>' this will declare the sort '<mod>_s' (state of the module) and will
define and declare functions operating on that state.

The following SMT2 functions are generated for a module with name '<mod>'.
Some declarations/definitions are printed with a special comment. A prover
using the SMT2 files can use those comments to collect all relevant metadata
about the design.

; yosys-smt2-module <mod>
(declare-sort |<mod>_s| 0)

The sort representing a state of module <mod>.

(define-fun |<mod>_h| ((state |<mod>_s|)) Bool (...))
This function must be asserted for each state to establish the
design hierarchy.

; yosys-smt2-input <wirename> <width>
; yosys-smt2-output <wirename> <width>
; yosys-smt2-register <wirename> <width>
; yosys-smt2-wire <wirename> <width>
(define-fun |<mod>_n <wirename>| (|<mod>_s|) (_ BitVec <width>))
(define-fun |<mod>_n <wirename>| (|<mod>_s|) Bool)

For each port, register, and wire with the 'keep' attribute set an
accessor function is generated. Single-bit wires are returned as Bool,
multi-bit wires as BitVec.

; yosys-smt2-cell <submod> <instancename>
(declare-fun |<mod>_h <instancename>| (|<mod>_s|) |<submod>_s|)

There is a function like that for each hierarchical instance. It
returns the sort that represents the state of the sub-module that
implements the instance.

(declare-fun |<mod>_is| (|<mod>_s|) Bool)
This function must be asserted 'true' for initial states, and 'false'
otherwise.

(define-fun |<mod>_i| ((state |<mod>_s|)) Bool (...))
(continues on next page)

G.252. write_smt2 - write design to SMT-LIBv2 file 331

YosysHQ Yosys

(continued from previous page)

This function must be asserted 'true' for initial states. For
non-initial states it must be left unconstrained.

(define-fun |<mod>_t| ((state |<mod>_s|) (next_state |<mod>_s|)) Bool (...))
This function evaluates to 'true' if the states 'state' and
'next_state' form a valid state transition.

(define-fun |<mod>_a| ((state |<mod>_s|)) Bool (...))
This function evaluates to 'true' if all assertions hold in the state.

(define-fun |<mod>_u| ((state |<mod>_s|)) Bool (...))
This function evaluates to 'true' if all assumptions hold in the state.

; yosys-smt2-assert <id> <filename:linenum>
(define-fun |<mod>_a <id>| ((state |<mod>_s|)) Bool (...))

Each $assert cell is converted into one of this functions. The function
evaluates to 'true' if the assert statement holds in the state.

; yosys-smt2-assume <id> <filename:linenum>
(define-fun |<mod>_u <id>| ((state |<mod>_s|)) Bool (...))

Each $assume cell is converted into one of this functions. The function
evaluates to 'true' if the assume statement holds in the state.

; yosys-smt2-cover <id> <filename:linenum>
(define-fun |<mod>_c <id>| ((state |<mod>_s|)) Bool (...))

Each $cover cell is converted into one of this functions. The function
evaluates to 'true' if the cover statement is activated in the state.

Options:

-verbose
this will print the recursive walk used to export the modules.

-stbv
Use a BitVec sort to represent a state instead of an uninterpreted
sort. As a side-effect this will prevent use of arrays to model
memories.

-stdt
Use SMT-LIB 2.6 style datatypes to represent a state instead of an
uninterpreted sort.

-nobv
disable support for BitVec (FixedSizeBitVectors theory). without this
option multi-bit wires are represented using the BitVec sort and
support for coarse grain cells (incl. arithmetic) is enabled.

-nomem
disable support for memories (via ArraysEx theory). this option is
implied by -nobv. only $mem cells without merged registers in
read ports are supported. call "memory" with -nordff to make sure
that no registers are merged into $mem read ports. '<mod>_m' functions

(continues on next page)

332 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

will be generated for accessing the arrays that are used to represent
memories.

-wires
create '<mod>_n' functions for all public wires. by default only ports,
registers, and wires with the 'keep' attribute are exported.

-tpl <template_file>
use the given template file. the line containing only the token '%%'
is replaced with the regular output of this command.

-solver-option <option> <value>
emit a `; yosys-smt2-solver-option` directive for yosys-smtbmc to write
the given option as a `(set-option ...)` command in the SMT-LIBv2.

[1] For more information on SMT-LIBv2 visit http://smt-lib.org/ or read David
R. Cok's tutorial: https://smtlib.github.io/jSMTLIB/SMTLIBTutorial.pdf

Example:

Consider the following module (test.v). We want to prove that the output can
never transition from a non-zero value to a zero value.

module test(input clk, output reg [3:0] y);
always @(posedge clk)
y <= (y << 1) | ^y;

endmodule

For this proof we create the following template (test.tpl).

; we need QF_UFBV for this proof
(set-logic QF_UFBV)

; insert the auto-generated code here
%%

; declare two state variables s1 and s2
(declare-fun s1 () test_s)
(declare-fun s2 () test_s)

; state s2 is the successor of state s1
(assert (test_t s1 s2))

; we are looking for a model with y non-zero in s1
(assert (distinct (|test_n y| s1) #b0000))

; we are looking for a model with y zero in s2
(assert (= (|test_n y| s2) #b0000))

; is there such a model?
(continues on next page)

G.252. write_smt2 - write design to SMT-LIBv2 file 333

YosysHQ Yosys

(continued from previous page)

(check-sat)

The following yosys script will create a 'test.smt2' file for our proof:

read_verilog test.v
hierarchy -check; proc; opt; check -assert
write_smt2 -bv -tpl test.tpl test.smt2

Running 'cvc4 test.smt2' will print 'unsat' because y can never transition
from non-zero to zero in the test design.

G.253 write_smv - write design to SMV file

write_smv [options] [filename]

Write an SMV description of the current design.

-verbose
this will print the recursive walk used to export the modules.

-tpl <template_file>
use the given template file. the line containing only the token '%%'
is replaced with the regular output of this command.

THIS COMMAND IS UNDER CONSTRUCTION

G.254 write_spice - write design to SPICE netlist file

write_spice [options] [filename]

Write the current design to an SPICE netlist file.

-big_endian
generate multi-bit ports in MSB first order
(default is LSB first)

-neg net_name
set the net name for constant 0 (default: Vss)

-pos net_name
set the net name for constant 1 (default: Vdd)

-buf DC|subckt_name
set the name for jumper element (default: DC)
(used to connect different nets)

-nc_prefix
(continues on next page)

334 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

prefix for not-connected nets (default: _NC)

-inames
include names of internal ($-prefixed) nets in outputs
(default is to use net numbers instead)

-top top_module
set the specified module as design top module

G.255 write_table - write design as connectivity table

write_table [options] [filename]

Write the current design as connectivity table. The output is a tab-separated
ASCII table with the following columns:

module name
cell name
cell type
cell port
direction
signal

module inputs and outputs are output using cell type and port '-' and with
'pi' (primary input) or 'po' (primary output) or 'pio' as direction.

G.256 write_verilog - write design to Verilog file

write_verilog [options] [filename]

Write the current design to a Verilog file.

-sv
with this option, SystemVerilog constructs like always_comb are used

-norename
without this option all internal object names (the ones with a dollar
instead of a backslash prefix) are changed to short names in the
format '_<number>_'.

-renameprefix <prefix>
insert this prefix in front of auto-generated instance names

-noattr
with this option no attributes are included in the output

-attr2comment
(continues on next page)

G.255. write_table - write design as connectivity table 335

YosysHQ Yosys

(continued from previous page)

with this option attributes are included as comments in the output

-noexpr
without this option all internal cells are converted to Verilog
expressions.

-noparallelcase
With this option no parallel_case attributes are used. Instead, a case
statement that assigns don't-care values for priority dependent inputs
is generated.

-siminit
add initial statements with hierarchical refs to initialize FFs when
in -noexpr mode.

-nodec
32-bit constant values are by default dumped as decimal numbers,
not bit pattern. This option deactivates this feature and instead
will write out all constants in binary.

-decimal
dump 32-bit constants in decimal and without size and radix

-nohex
constant values that are compatible with hex output are usually
dumped as hex values. This option deactivates this feature and
instead will write out all constants in binary.

-nostr
Parameters and attributes that are specified as strings in the
original input will be output as strings by this back-end. This
deactivates this feature and instead will write string constants
as binary numbers.

-simple-lhs
Connection assignments with simple left hand side without
concatenations.

-extmem
instead of initializing memories using assignments to individual
elements, use the '$readmemh' function to read initialization data
from a file. This data is written to a file named by appending
a sequential index to the Verilog filename and replacing the extension
with '.mem', e.g. 'write_verilog -extmem foo.v' writes 'foo-1.mem',
'foo-2.mem' and so on.

-defparam
use 'defparam' statements instead of the Verilog-2001 syntax for
cell parameters.

-blackboxes
usually modules with the 'blackbox' attribute are ignored. with

(continues on next page)

336 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

this option set only the modules with the 'blackbox' attribute
are written to the output file.

-selected
only write selected modules. modules must be selected entirely or
not at all.

-v
verbose output (print new names of all renamed wires and cells)

Note that RTLIL processes can't always be mapped directly to Verilog
always blocks. This frontend should only be used to export an RTLIL
netlist, i.e. after the "proc" pass has been used to convert all
processes to logic networks and registers. A warning is generated when
this command is called on a design with RTLIL processes.

G.257 write_xaiger - write design to XAIGER file

write_xaiger [options] [filename]

Write the top module (according to the (* top *) attribute or if only one module
is currently selected) to an XAIGER file. Any non $_NOT_, $_AND_, (optionally
$_DFF_N_, $_DFF_P_), or non (* abc9_box *) cells will be converted into psuedo-
inputs and pseudo-outputs. Whitebox contents will be taken from the equivalent
module in the '$abc9_holes' design, if it exists.

-ascii
write ASCII version of AIGER format

-map <filename>
write an extra file with port and box symbols

-dff
write $_DFF_[NP]_ cells

G.258 xilinx_dffopt - Xilinx: optimize FF control signal usage

xilinx_dffopt [options] [selection]

Converts hardware clock enable and set/reset signals on FFs to emulation
using LUTs, if doing so would improve area. Operates on post-techmap Xilinx
cells (LUT*, FD*).

-lut4
Assume a LUT4-based device (instead of a LUT6-based device).

G.257. write_xaiger - write design to XAIGER file 337

YosysHQ Yosys

G.259 xilinx_dsp - Xilinx: pack resources into DSPs

xilinx_dsp [options] [selection]

Pack input registers (A2, A1, B2, B1, C, D, AD; with optional enable/reset),
pipeline registers (M; with optional enable/reset), output registers (P; with
optional enable/reset), pre-adder and/or post-adder into Xilinx DSP resources.

Multiply-accumulate operations using the post-adder with feedback on the 'C'
input will be folded into the DSP. In this scenario only, the 'C' input can be
used to override the current accumulation result with a new value, which will
be added to the multiplier result to form the next accumulation result.

Use of the dedicated 'PCOUT' -> 'PCIN' cascade path is detected for 'P' -> 'C'
connections (optionally, where 'P' is right-shifted by 17-bits and used as an
input to the post-adder -- a pattern common for summing partial products to
implement wide multipliers). Limited support also exists for similar cascading
for A and B using '[AB]COUT' -> '[AB]CIN'. Currently, cascade chains are limited
to a maximum length of 20 cells, corresponding to the smallest Xilinx 7 Series
device.

This pass is a no-op if the scratchpad variable 'xilinx_dsp.multonly' is set
to 1.

Experimental feature: addition/subtractions less than 12 or 24 bits with the
'(* use_dsp="simd" *)' attribute attached to the output wire or attached to
the add/subtract operator will cause those operations to be implemented using
the 'SIMD' feature of DSPs.

Experimental feature: the presence of a `$ge' cell attached to the registered
P output implementing the operation "(P >= <power-of-2>)" will be transformed
into using the DSP48E1's pattern detector feature for overflow detection.

-family {xcup|xcu|xc7|xc6v|xc5v|xc4v|xc6s|xc3sda}
select the family to target
default: xc7

G.260 xilinx_srl - Xilinx shift register extraction

xilinx_srl [options] [selection]

This pass converts chains of built-in flops (bit-level: $_DFF_[NP]_, $_DFFE_*
and word-level: $dff, $dffe) as well as Xilinx flops (FDRE, FDRE_1) into a
$__XILINX_SHREG cell. Chains must be of the same cell type, clock, clock
polarity, enable, and enable polarity (where relevant).
Flops with resets cannot be mapped to Xilinx devices and will not be inferred.

-minlen N
min length of shift register (default = 3)

(continues on next page)

338 Appendix G. Command line reference

YosysHQ Yosys

(continued from previous page)

-fixed
infer fixed-length shift registers.

-variable
infer variable-length shift registers (i.e. fixed-length shifts where
each element also fans-out to a $shiftx cell).

G.261 xprop - formal x propagation

xprop [options] [selection]

This pass transforms the circuit into an equivalent circuit that explicitly
encodes the propagation of x values using purely 2-valued logic. On the
interface between xprop-transformed and non-transformed parts of the design,
appropriate conversions are inserted automatically.

-split-inputs
-split-outputs
-split-ports

Replace each input/output/port with two new ports, one carrying the
defined values (named <portname>_d) and one carrying the mask of which
bits are x (named <portname>_x). When a bit in the <portname>_x is set
the corresponding bit in <portname>_d is ignored for inputs and
guaranteed to be 0 for outputs.

-split-public
Replace each public non-port wire with two new wires, one carrying the
defined values (named <wirename>_d) and one carrying the mask of which
bits are x (named <wirename>_x). When a bit in the <portname>_x is set
the corresponding bit in <wirename>_d is guaranteed to be 0 for
outputs.

-assume-encoding
Add encoding invariants as assumptions. This can speed up formal
verification tasks.

-assert-encoding
Add encoding invariants as assertions. Used for testing the xprop
pass itself.

-assume-def-inputs
Assume all inputs are fully defined. This adds corresponding
assumptions to the design and uses these assumptions to optimize the
xprop encoding.

-required
Produce a runtime error if any encountered cell could not be encoded.

(continues on next page)

G.261. xprop - formal x propagation 339

YosysHQ Yosys

(continued from previous page)

-formal
Produce a runtime error if any encoded cell uses a signal that is

neither known to be non-x nor driven by another encoded cell.

-debug-asserts
Add assertions checking that the encoding used by this pass never
produces x values within the encoded signals.

G.262 zinit - add inverters so all FF are zero-initialized

zinit [options] [selection]

Add inverters as needed to make all FFs zero-initialized.

-all
also add zero initialization to uninitialized FFs

340 Appendix G. Command line reference

BIBLIOGRAPHY

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and tools.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986. ISBN 0-201-10088-6.

[A+02] IEEE Standards Association and others. Ieee standard for verilog register transfer level synthesis.
IEEE Std 1364.1-2002, 2002. doi:10.1109/IEEESTD.2002.94220.

[A+04] IEEE Standards Association and others. Ieee standard for vhdl register transfer level
(rtl) synthesis. IEEE Std 1076.6-2004 (Revision of IEEE Std 1076.6-1999), 2004.
doi:10.1109/IEEESTD.2004.94802.

[A+06] IEEE Standards Association and others. Ieee standard for verilog hardware de-
scription language. IEEE Std 1364-2005 (Revision of IEEE Std 1364-2001), 2006.
doi:10.1109/IEEESTD.2006.99495.

[A+09] IEEE Standards Association and others. Ieee standard vhdl language reference manual. IEEE
Std 1076-2008 (Revision of IEEE Std 1076-2002), 26 2009. doi:10.1109/IEEESTD.2009.4772740.

[A+10] IEEE Standards Association and others. Ieee standard for ip-xact, standard structure for pack-
aging, integrating, and reusing ip within tools flows. IEEE Std 1685-2009, pages C1–360, 2010.
doi:10.1109/IEEESTD.2010.5417309.

[BHSV90] R.K. Brayton, G.D. Hachtel, and A.L. Sangiovanni-Vincentelli. Multilevel logic synthesis. Pro-
ceedings of the IEEE, 78(2):264–300, 1990. doi:10.1109/5.52213.

[BBL08] Robert Brummayer, Armin Biere, and Florian Lonsing. Btor: bit-precise modelling of word-
level problems for model checking. In Proceedings of the joint workshops of the 6th international
workshop on satisfiability modulo theories and 1st international workshop on bit-precise reason-
ing, 33–38. 2008.

[CI00] Clifford E. Cummings and Sunburst Design Inc. Nonblocking assignments in verilog synthesis,
coding styles that kill. In SNUG (Synopsys Users Group) 2000 User Papers, section-MC1 (1 st
paper. 2000.

[EenSorensson03] Niklas Eén and Niklas Sörensson. Temporal induction by incremental sat solving. Elec-
tronic Notes in Theoretical Computer Science, 89(4):543–560, 2003.

[GW13] Johann Glaser and C. Wolf. Methodology and example-driven interconnect synthesis for design-
ing heterogeneous coarse-grain reconfigurable architectures. In Jan Haase, editor, Advances in
Models, Methods, and Tools for Complex Chip Design — Selected contributions from FDL'12.
Springer, 2013.

[HS96] G D Hachtel and F Somenzi. Logic synthesis and verification algorithms. 1996.

[LHBB85] Kyu Y. Lee, Michael Holley, Mary Bailey, and Walter Bright. A high-level design language for
programmable logic devices. VLSI Design (Manhasset NY: CPM Publications), pages 50–62,
June 1985.

341

https://doi.org/10.1109/IEEESTD.2002.94220
https://doi.org/10.1109/IEEESTD.2004.94802
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2009.4772740
https://doi.org/10.1109/IEEESTD.2010.5417309
https://doi.org/10.1109/5.52213

YosysHQ Yosys

[STGR10] Yiqiong Shi, Chan Wai Ting, Bah-Hwee Gwee, and Ye Ren. A highly efficient method for ex-
tracting fsms from flattened gate-level netlist. In Circuits and Systems (ISCAS), Proceedings of
2010 IEEE International Symposium on, 2610–2613. 2010. doi:10.1109/ISCAS.2010.5537093.

[Ull76] J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42, January 1976.
doi:10.1145/321921.321925.

[Wol13] C. Wolf. Design and implementation of the yosys open synthesis suite. Bachelor Thesis, Vienna
University of Technology, 2013.

[WGS+12] C. Wolf, Johann Glaser, Florian Schupfer, Jan Haase, and Christoph Grimm. Example-driven
interconnect synthesis for heterogeneous coarse-grain reconfigurable logic. In FDL Proceeding of
the 2012 Forum on Specification and Design Languages, 194–201. 2012.

342 Bibliography

https://doi.org/10.1109/ISCAS.2010.5537093
https://doi.org/10.1145/321921.321925

	Introduction
	History of Yosys
	Structure of this document

	Basic principles
	Levels of abstraction
	System level
	High level
	Behavioural level
	Register-Transfer Level (RTL)
	Logical gate level
	Physical gate level
	Switch level
	Yosys

	Features of synthesizable Verilog
	Structural Verilog
	Expressions in Verilog
	Behavioural modelling
	Functions and tasks
	Conditionals, loops and generate-statements
	Arrays and memories

	Challenges in digital circuit synthesis
	Standards compliance
	Optimizations
	Technology mapping

	Script-based synthesis flows
	Methods from compiler design
	Lexing and parsing
	Multi-pass compilation
	Static Single Assignment (SSA) form

	Approach
	Data- and control-flow
	Internal formats in Yosys
	Typical use case

	Implementation overview
	Simplified data flow
	The RTL Intermediate Language (RTLIL)
	RTLIL identifiers
	RTLIL::Design and RTLIL::Module
	RTLIL::Cell and RTLIL::Wire
	RTLIL::SigSpec
	RTLIL::Process
	RTLIL::Memory

	Command interface and synthesis scripts
	Source tree and build system

	Internal cell library
	RTL cells
	Unary operators
	Binary operators
	Multiplexers
	Registers
	Memories
	Finite state machines
	Specify rules
	Formal verification cells
	Debugging cells
	Format string syntax

	Gates

	Programming Yosys extensions
	Guidelines
	The “stubsnets” example module

	The Verilog and AST frontends
	Transforming Verilog to AST
	The Verilog preprocessor
	The Verilog lexer
	The Verilog parser

	Transforming AST to RTLIL
	AST simplification
	Generating RTLIL

	Synthesizing Verilog always blocks
	The ProcessGenerator algorithm
	Handling of nonblocking assignments
	Handling of blocking assignments
	Handling of cases and if-statements
	Further analysis of the algorithm for cases and if-statements

	The proc pass

	Synthesizing Verilog arrays
	Synthesizing parametric designs

	Optimizations
	Simple optimizations
	The opt_expr pass
	The opt_muxtree pass
	The opt_reduce pass
	The opt_rmdff pass
	The opt_clean pass
	The opt_merge pass

	FSM extraction and encoding
	FSM detection
	FSM extraction
	FSM optimization
	FSM recoding

	Logic optimization

	Technology mapping
	Cell substitution
	Subcircuit substitution
	Gate-level technology mapping

	Memory mapping
	Additional notes
	Memory kind selection
	Initial data
	Write port with byte enables

	Simple dual port (SDP) memory patterns
	Asynchronous-read SDP
	Synchronous SDP with clock domain crossing
	Synchronous SDP read first
	Synchronous SDP with undefined collision behavior
	Synchronous SDP with write-first behavior
	Synchronous SDP with write-first behavior (alternate pattern)

	Single-port RAM memory patterns
	Asynchronous-read single-port RAM
	Synchronous single-port RAM with mutually exclusive read/write
	Synchronous single-port RAM with read-first behavior
	Synchronous single-port RAM with write-first behavior
	Synchronous read port with initial value

	Read register reset patterns
	Synchronous reset, reset priority over enable
	Synchronous reset, enable priority over reset
	Synchronous read port with asynchronous reset

	Asymmetric memory patterns
	Wide synchronous read port
	Wide asynchronous read port
	Wide write port

	True dual port (TDP) patterns
	TDP with different clocks, exclusive read/write
	TDP with same clock, read-first behavior
	TDP with multiple read ports

	Not yet supported patterns
	Synchronous SDP with write-first behavior via blocking assignments
	Asymmetric memories via part selection

	Undesired patterns
	Asynchronous writes

	Auxiliary libraries
	SHA1
	BigInt
	SubCircuit
	ezSAT

	Auxiliary programs
	yosys-config
	yosys-filterlib
	yosys-abc

	RTLIL text representation
	Lexical elements
	Characters
	Identifiers
	Values
	Strings
	Comments

	File
	Autoindex statements
	Modules
	Attribute statements
	Signal specifications
	Connections
	Wires
	Memories
	Cells
	Processes
	Switches
	Syncs

	010: Converting Verilog to BLIF page
	Installation
	Getting started
	Using a synthesis script
	Advanced example: The Amber23 ARMv2a CPU
	Verification of the Amber23 CPU
	Limitations
	Conclusion

	011: Interactive design investigation page
	Installation and prerequisites
	Overview
	Introduction to the show command
	A simple circuit
	Break-out boxes for signal vectors
	Gate level netlists
	Miscellaneous notes

	Navigating the design
	Interactive navigation
	Working with selections
	Operations on selections
	Selecting logic cones
	Storing and recalling selections

	Advanced investigation techniques
	Evaluation of combinatorial circuits
	Solving combinatorial SAT problems
	Solving sequential SAT problems

	Conclusion

	012: Converting Verilog to BTOR page
	Installation
	Quick start
	Detailed flow
	Example
	Limitations
	Conclusion

	Command line reference
	abc - use ABC for technology mapping
	abc9 - use ABC9 for technology mapping
	abc9_exe - use ABC9 for technology mapping
	abc9_ops - helper functions for ABC9
	add - add objects to the design
	aigmap - map logic to and-inverter-graph circuit
	alumacc - extract ALU and MACC cells
	anlogic_eqn - Anlogic: Calculate equations for luts
	anlogic_fixcarry - Anlogic: fix carry chain
	assertpmux - adds asserts for parallel muxes
	async2sync - convert async FF inputs to sync circuits
	attrmap - renaming attributes
	attrmvcp - move or copy attributes from wires to driving cells
	autoname - automatically assign names to objects
	blackbox - convert modules into blackbox modules
	bmuxmap - transform $bmux cells to trees of $mux cells
	booth - map $mul cells to Booth multipliers
	bugpoint - minimize testcases
	bwmuxmap - replace $bwmux cells with equivalent logic
	cd - a shortcut for ‘select -module <name>’
	check - check for obvious problems in the design
	chformal - change formal constraints of the design
	chparam - re-evaluate modules with new parameters
	chtype - change type of cells in the design
	clean - remove unused cells and wires
	clean_zerowidth - clean zero-width connections from the design
	clk2fflogic - convert clocked FFs to generic $ff cells
	clkbufmap - insert clock buffers on clock networks
	connect - create or remove connections
	connect_rpc - connect to RPC frontend
	connwrappers - match width of input-output port pairs
	coolrunner2_fixup - insert necessary buffer cells for CoolRunner-II architecture
	coolrunner2_sop - break $sop cells into ANDTERM/ORTERM cells
	copy - copy modules in the design
	cover - print code coverage counters
	cutpoint - adds formal cut points to the design
	debug - run command with debug log messages enabled
	delete - delete objects in the design
	deminout - demote inout ports to input or output
	demuxmap - transform $demux cells to $eq + $mux cells
	design - save, restore and reset current design
	dffinit - set INIT param on FF cells
	dfflegalize - convert FFs to types supported by the target
	dfflibmap - technology mapping of flip-flops
	dffunmap - unmap clock enable and synchronous reset from FFs
	dft_tag - create tagging logic for data flow tracking
	dump - print parts of the design in RTLIL format
	echo - turning echoing back of commands on and off
	edgetypes - list all types of edges in selection
	efinix_fixcarry - Efinix: fix carry chain
	equiv_add - add a $equiv cell
	equiv_induct - proving $equiv cells using temporal induction
	equiv_make - prepare a circuit for equivalence checking
	equiv_mark - mark equivalence checking regions
	equiv_miter - extract miter from equiv circuit
	equiv_opt - prove equivalence for optimized circuit
	equiv_purge - purge equivalence checking module
	equiv_remove - remove $equiv cells
	equiv_simple - try proving simple $equiv instances
	equiv_status - print status of equivalent checking module
	equiv_struct - structural equivalence checking
	eval - evaluate the circuit given an input
	exec - execute commands in the operating system shell
	expose - convert internal signals to module ports
	extract - find subcircuits and replace them with cells
	extract_counter - Extract GreenPak4 counter cells
	extract_fa - find and extract full/half adders
	extract_reduce - converts gate chains into $reduce_* cells
	extractinv - extract explicit inverter cells for invertible cell pins
	flatten - flatten design
	flowmap - pack LUTs with FlowMap
	fmcombine - combine two instances of a cell into one
	fminit - set init values/sequences for formal
	formalff - prepare FFs for formal
	freduce - perform functional reduction
	fsm - extract and optimize finite state machines
	fsm_detect - finding FSMs in design
	fsm_expand - expand FSM cells by merging logic into it
	fsm_export - exporting FSMs to KISS2 files
	fsm_extract - extracting FSMs in design
	fsm_info - print information on finite state machines
	fsm_map - mapping FSMs to basic logic
	fsm_opt - optimize finite state machines
	fsm_recode - recoding finite state machines
	fst2tb - generate testbench out of fst file
	future - resolve future sampled value functions
	gatemate_foldinv - fold inverters into Gatemate LUT trees
	glift - create GLIFT models and optimization problems
	greenpak4_dffinv - merge greenpak4 inverters and DFF/latches
	help - display help messages
	hierarchy - check, expand and clean up design hierarchy
	hilomap - technology mapping of constant hi- and/or lo-drivers
	history - show last interactive commands
	ice40_braminit - iCE40: perform SB_RAM40_4K initialization from file
	ice40_dsp - iCE40: map multipliers
	ice40_opt - iCE40: perform simple optimizations
	ice40_wrapcarry - iCE40: wrap carries
	insbuf - insert buffer cells for connected wires
	iopadmap - technology mapping of i/o pads (or buffers)
	jny - write design and metadata
	json - write design in JSON format
	lattice_gsr - Lattice: handle GSR
	log - print text and log files
	logger - set logger properties
	ls - list modules or objects in modules
	ltp - print longest topological path
	lut2mux - convert $lut to $_MUX_
	maccmap - mapping macc cells
	memory - translate memories to basic cells
	memory_bmux2rom - convert muxes to ROMs
	memory_bram - map memories to block rams
	memory_collect - creating multi-port memory cells
	memory_dff - merge input/output DFFs into memory read ports
	memory_libmap - map memories to cells
	memory_map - translate multiport memories to basic cells
	memory_memx - emulate vlog sim behavior for mem ports
	memory_narrow - split up wide memory ports
	memory_nordff - extract read port FFs from memories
	memory_share - consolidate memory ports
	memory_unpack - unpack multi-port memory cells
	miter - automatically create a miter circuit
	mutate - generate or apply design mutations
	muxcover - cover trees of MUX cells with wider MUXes
	muxpack - $mux/$pmux cascades to $pmux
	nlutmap - map to LUTs of different sizes
	onehot - optimize $eq cells for onehot signals
	opt - perform simple optimizations
	opt_clean - remove unused cells and wires
	opt_demorgan - Optimize reductions with DeMorgan equivalents
	opt_dff - perform DFF optimizations
	opt_expr - perform const folding and simple expression rewriting
	opt_ffinv - push inverters through FFs
	opt_lut - optimize LUT cells
	opt_lut_ins - discard unused LUT inputs
	opt_mem - optimize memories
	opt_mem_feedback - convert memory read-to-write port feedback paths to write enables
	opt_mem_priority - remove priority relations between write ports that can never collide
	opt_mem_widen - optimize memories where all ports are wide
	opt_merge - consolidate identical cells
	opt_muxtree - eliminate dead trees in multiplexer trees
	opt_reduce - simplify large MUXes and AND/OR gates
	opt_share - merge mutually exclusive cells of the same type that share an input signal
	paramap - renaming cell parameters
	peepopt - collection of peephole optimizers
	plugin - load and list loaded plugins
	pmux2shiftx - transform $pmux cells to $shiftx cells
	pmuxtree - transform $pmux cells to trees of $mux cells
	portlist - list (top-level) ports
	prep - generic synthesis script
	printattrs - print attributes of selected objects
	proc - translate processes to netlists
	proc_arst - detect asynchronous resets
	proc_clean - remove empty parts of processes
	proc_dff - extract flip-flops from processes
	proc_dlatch - extract latches from processes
	proc_init - convert initial block to init attributes
	proc_memwr - extract memory writes from processes
	proc_mux - convert decision trees to multiplexers
	proc_prune - remove redundant assignments
	proc_rmdead - eliminate dead trees in decision trees
	proc_rom - convert switches to ROMs
	qbfsat - solve a 2QBF-SAT problem in the circuit
	ql_bram_merge - Infers QuickLogic k6n10f BRAM pairs that can operate independently
	ql_bram_types - Change TDP36K type to subtypes
	ql_dsp_io_regs - change types of QL_DSP2 depending on configuration
	ql_dsp_macc - infer QuickLogic multiplier-accumulator DSP cells
	ql_dsp_simd - merge QuickLogic K6N10f DSP pairs to operate in SIMD mode
	qwp - quadratic wirelength placer
	read - load HDL designs
	read_aiger - read AIGER file
	read_blif - read BLIF file
	read_ilang - (deprecated) alias of read_rtlil
	read_json - read JSON file
	read_liberty - read cells from liberty file
	read_rtlil - read modules from RTLIL file
	read_verilog - read modules from Verilog file
	recover_names - Execute a lossy mapping command and recover original netnames
	rename - rename object in the design
	rmports - remove module ports with no connections
	sat - solve a SAT problem in the circuit
	scatter - add additional intermediate nets
	scc - detect strongly connected components (logic loops)
	scratchpad - get/set values in the scratchpad
	script - execute commands from file or wire
	select - modify and view the list of selected objects
	setattr - set/unset attributes on objects
	setparam - set/unset parameters on objects
	setundef - replace undef values with defined constants
	share - perform sat-based resource sharing
	shell - enter interactive command mode
	show - generate schematics using graphviz
	shregmap - map shift registers
	sim - simulate the circuit
	simplemap - mapping simple coarse-grain cells
	splice - create explicit splicing cells
	splitcells - split up multi-bit cells
	splitnets - split up multi-bit nets
	sta - perform static timing analysis
	stat - print some statistics
	submod - moving part of a module to a new submodule
	supercover - add hi/lo cover cells for each wire bit
	synth - generic synthesis script
	synth_achronix - synthesis for Achronix Speedster22i FPGAs.
	synth_anlogic - synthesis for Anlogic FPGAs
	synth_coolrunner2 - synthesis for Xilinx Coolrunner-II CPLDs
	synth_easic - synthesis for eASIC platform
	synth_ecp5 - synthesis for ECP5 FPGAs
	synth_efinix - synthesis for Efinix FPGAs
	synth_fabulous - FABulous synthesis script
	synth_gatemate - synthesis for Cologne Chip GateMate FPGAs
	synth_gowin - synthesis for Gowin FPGAs
	synth_greenpak4 - synthesis for GreenPAK4 FPGAs
	synth_ice40 - synthesis for iCE40 FPGAs
	synth_intel - synthesis for Intel (Altera) FPGAs.
	synth_intel_alm - synthesis for ALM-based Intel (Altera) FPGAs.
	synth_lattice - synthesis for Lattice FPGAs
	synth_nexus - synthesis for Lattice Nexus FPGAs
	synth_quicklogic - Synthesis for QuickLogic FPGAs
	synth_sf2 - synthesis for SmartFusion2 and IGLOO2 FPGAs
	synth_xilinx - synthesis for Xilinx FPGAs
	synthprop - synthesize SVA properties
	tcl - execute a TCL script file
	techmap - generic technology mapper
	tee - redirect command output to file
	test_abcloop - automatically test handling of loops in abc command
	test_autotb - generate simple test benches
	test_cell - automatically test the implementation of a cell type
	test_pmgen - test pass for pmgen
	torder - print cells in topological order
	trace - redirect command output to file
	tribuf - infer tri-state buffers
	uniquify - create unique copies of modules
	verific - load Verilog and VHDL designs using Verific
	verilog_defaults - set default options for read_verilog
	verilog_defines - define and undefine verilog defines
	viz - visualize data flow graph
	wbflip - flip the whitebox attribute
	wreduce - reduce the word size of operations if possible
	write_aiger - write design to AIGER file
	write_blif - write design to BLIF file
	write_btor - write design to BTOR file
	write_cxxrtl - convert design to C++ RTL simulation
	write_edif - write design to EDIF netlist file
	write_file - write a text to a file
	write_firrtl - write design to a FIRRTL file
	write_ilang - (deprecated) alias of write_rtlil
	write_intersynth - write design to InterSynth netlist file
	write_jny - generate design metadata
	write_json - write design to a JSON file
	write_rtlil - write design to RTLIL file
	write_simplec - convert design to simple C code
	write_smt2 - write design to SMT-LIBv2 file
	write_smv - write design to SMV file
	write_spice - write design to SPICE netlist file
	write_table - write design as connectivity table
	write_verilog - write design to Verilog file
	write_xaiger - write design to XAIGER file
	xilinx_dffopt - Xilinx: optimize FF control signal usage
	xilinx_dsp - Xilinx: pack resources into DSPs
	xilinx_srl - Xilinx shift register extraction
	xprop - formal x propagation
	zinit - add inverters so all FF are zero-initialized

	Bibliography

