
1

Yosys Application Note 012:
Converting Verilog to BTOR

Ahmed Irfan and Clifford Wolf
April 2015

Abstract—Verilog-2005 is a powerful Hardware Description Language
(HDL) that can be used to easily create complex designs from small HDL
code. BTOR [3] is a bit-precise word-level format for model checking. It is
a simple format and easy to parse. It allows to model the model checking
problem over the theory of bit-vectors with one-dimensional arrays, thus
enabling to model Verilog designs with registers and memories. Yosys [1]
is an Open-Source Verilog synthesis tool that can be used to convert
Verilog designs with simple assertions to BTOR format.

I. INSTALLATION

Yosys written in C++ (using features from C++11) and is tested on
modern Linux. It should compile fine on most UNIX systems with a
C++11 compiler. The README file contains useful information on
building Yosys and its prerequisites.

Yosys is a large and feature-rich program with some dependencies.
For this work, we may deactivate other extra features such as TCL and
ABC support in the Makefile.

This Application Note is based on GIT Rev. 082550f from 2015-
04-04 of Yosys [1].

II. QUICK START

We assume that the Verilog design is synthesizable and we also
assume that the design does not have multi-dimensional memories.
As BTOR implicitly initializes registers to zero value and memories
stay uninitialized, we assume that the Verilog design does not contain
initial blocks. For more details about the BTOR format, please refer
to [3].

We provide a shell script verilog2btor.sh which can be used to
convert a Verilog design to BTOR. The script can be found in the
backends/btor directory. The following example shows its usage:

verilog2btor.sh fsm.v fsm.btor test

Listing 1. Using verilog2btor script

The script verilog2btor.sh takes three parameters. In the above
example, the first parameter fsm.v is the input design, the second
parameter fsm.btor is the file name of BTOR output, and the third
parameter test is the name of top module in the design.

To specify the properties (that need to be checked), we have two
options:

• We can use the Verilog assert statement in the procedural block
or module body of the Verilog design, as shown in Listing 2.
This is the preferred option.

• We can use a single-bit output wire, whose name starts with
safety. The value of this output wire needs to be driven low
when the property is met, i.e. the solver will try to find a
model that makes the safety pin go high. This is demonstrated
in Listing 3.

module test(input clk, input rst, output y);

reg [2:0] state;

always @(posedge clk) begin

if (rst || state == 3) begin

state <= 0;

end else begin

assert(state < 3);

state <= state + 1;

end

end

assign y = state[2];

assert property (y !== 1’b1);

endmodule

Listing 2. Specifying property in Verilog design with assert

module test(input clk, input rst,

output y, output safety1);

reg [2:0] state;

always @(posedge clk) begin

if (rst || state == 3)

state <= 0;

else

state <= state + 1;

end

assign y = state[2];

assign safety1 = !(y !== 1’b1);

endmodule

Listing 3. Specifying property in Verilog design with output wire

We can run Boolector [2] 1.4.11 on the generated BTOR file:

$ boolector fsm.btor

unsat

Listing 4. Running boolector on BTOR file

We can also use nuXmv [4], but on BTOR designs it does not
support memories yet. With the next release of nuXmv, we will be
also able to verify designs with memories.

III. DETAILED FLOW

Yosys is able to synthesize Verilog designs up to the gate level.
We are interested in keeping registers and memories when syn-
thesizing the design. For this purpose, we describe a customized
Yosys synthesis flow, that is also provided by the verilog2btor.sh

1 Newer version of Boolector do not support sequential models. Boolector
1.4.1 can be built with picosat-951. Newer versions of picosat have an
incompatible API.

2

script. Listing 5 shows the Yosys commands that are executed by
verilog2btor.sh.

1 read_verilog -sv $1;

2 hierarchy -top $3; hierarchy -libdir $DIR;

3 hierarchy -check;

4 proc; opt;

5 opt_expr -mux_undef; opt;

6 rename -hide;;;

7 splice; opt;

8 memory_dff -wr_only; memory_collect;;

9 flatten;;

10 memory_unpack;

11 splitnets -driver;

12 setundef -zero -undriven;

13 opt;;;

14 write_btor $2;

Listing 5. Synthesis Flow for BTOR with memories

Here is short description of what is happening in the script line by
line:

1) Reading the input file.
2) Setting the top module in the hierarchy and trying to read

automatically the files which are given as include in the file
read in first line.

3) Checking the design hierarchy.
4) Converting processes to multiplexers (muxs) and flip-flops.
5) Removing undef signals from muxs.
6) Hiding all signal names that are not used as module ports.
7) Explicit type conversion, by introducing slice and concat cells

in the circuit.
8) Converting write memories to synchronous memories, and

collecting the memories to multi-port memories.
9) Flattening the design to get only one module.

10) Separating read and write memories.
11) Splitting the signals that are partially assigned
12) Setting undef to zero value.
13) Final optimization pass.
14) Writing BTOR file.

For detailed description of the commands mentioned above, please
refer to the Yosys documentation, or run yosys -h command_name.

The script presented earlier can be easily modified to have a BTOR
file that does not contain memories. This is done by removing the
line number 8 and 10, and introduces a new command memory at line
number 8. Listing 6 shows the modified Yosys script file:

read_verilog -sv $1;

hierarchy -top $3; hierarchy -libdir $DIR;

hierarchy -check;

proc; opt;

opt_expr -mux_undef; opt;

rename -hide;;;

splice; opt;

memory;;

flatten;;

splitnets -driver;

setundef -zero -undriven;

opt;;;

write_btor $2;

Listing 6. Synthesis Flow for BTOR without memories

IV. EXAMPLE

Here is an example Verilog design that we want to convert to
BTOR:

module array(input clk);

reg [7:0] counter;

reg [7:0] mem [7:0];

always @(posedge clk) begin

counter <= counter + 8’d1;

mem[counter] <= counter;

end

assert property (!(counter > 8’d0) ||

mem[counter - 8’d1] == counter - 8’d1);

endmodule

Listing 7. Example - Verilog Design

The generated BTOR file that contain memories, using the script
shown in Listing 5:

1 var 1 clk

2 array 8 3

3 var 8 $auto$rename.cc:150:execute$20

4 const 8 00000001

5 sub 8 3 4

6 slice 3 5 2 0

7 read 8 2 6

8 slice 3 3 2 0

9 add 8 3 4

10 const 8 00000000

11 ugt 1 3 10

12 not 1 11

13 const 8 11111111

14 slice 1 13 0 0

15 one 1

16 eq 1 1 15

17 and 1 16 14

18 write 8 3 2 8 3

19 acond 8 3 17 18 2

20 anext 8 3 2 19

21 eq 1 7 5

22 or 1 12 21

23 const 1 1

24 one 1

25 eq 1 23 24

26 cond 1 25 22 24

27 root 1 -26

28 cond 8 1 9 3

29 next 8 3 28

Listing 8. Example - Converted BTOR with memory

And the BTOR file obtained by the script shown in Listing 6,
which expands the memory into individual elements:

3

1 var 1 clk

2 var 8 mem[0]

3 var 8 $auto$rename.cc:150:execute$20

4 slice 3 3 2 0

5 slice 1 4 0 0

6 not 1 5

7 slice 1 4 1 1

8 not 1 7

9 slice 1 4 2 2

10 not 1 9

11 and 1 8 10

12 and 1 6 11

13 cond 8 12 3 2

14 cond 8 1 13 2

15 next 8 2 14

16 const 8 00000001

17 add 8 3 16

18 const 8 00000000

19 ugt 1 3 18

20 not 1 19

21 var 8 mem[2]

22 and 1 7 10

23 and 1 6 22

24 cond 8 23 3 21

25 cond 8 1 24 21

26 next 8 21 25

27 sub 8 3 16

...

54 cond 1 53 50 52

55 root 1 -54

...

77 cond 8 76 3 44

78 cond 8 1 77 44

79 next 8 44 78

Listing 9. Example - Converted BTOR without memory

V. LIMITATIONS

BTOR does not support initialization of memories and registers,
i.e. they are implicitly initialized to value zero, so the initial block for
memories need to be removed when converting to BTOR. It should
also be kept in consideration that BTOR does not support the x or z

values of Verilog.
Another thing to bear in mind is that Yosys will convert multi-

dimensional memories to one-dimensional memories and address
decoders. Therefore out-of-bounds memory accesses can yield un-
expected results.

VI. CONCLUSION

Using the described flow, we can use Yosys to generate word-
level verification benchmarks with or without memories from Verilog
designs.

REFERENCES

[1] Clifford Wolf. The Yosys Open SYnthesis Suite.
http://www.clifford.at/yosys/

[2] Robert Brummayer and Armin Biere, Boolector: An Efficient SMT Solver
for Bit-Vectors and Arrays
http://fmv.jku.at/boolector/

[3] Robert Brummayer and Armin Biere and Florian Lonsing, BTOR: Bit-
Precise Modelling of Word-Level Problems for Model Checking
http://fmv.jku.at/papers/BrummayerBiereLonsing-BPR08.pdf

[4] Roberto Cavada and Alessandro Cimatti and Michele Dorigatti and
Alberto Griggio and Alessandro Mariotti and Andrea Micheli and Sergio
Mover and Marco Roveri and Stefano Tonetta, The nuXmv Symbolic
Model Checker
https://es-static.fbk.eu/tools/nuxmv/index.php

http://www.clifford.at/yosys/
http://fmv.jku.at/boolector/
http://fmv.jku.at/papers/BrummayerBiereLonsing-BPR08.pdf
https://es-static.fbk.eu/tools/nuxmv/index.php

